COMPUTER ENGINEERING COURSE

SCHEME OF INSTRUCTION AND EXAMINATION REVISED COURSE 2019-2020

Course	Nomenclature of the	Scheme of Instruction Hrs/Week									
Code	Course				Duratiion	Mark	ζS				Credits
	course	L	Т	Р	(Hrs)	Th	IA	TW**	Р	Total	
CE310	Mathematics III	3	1	0	3	100	25	25	0	150	4
CE320	Logic Design	3	0	0	3	100	25	0	0	125	3
CE330	Data Structures	3	0	0	3	100	25	0	0	125	3
	Object Oriented										
CE340	Programming System	3	0	0	3	100	25	0	0	125	3
CE350	Computer Organization	3	1	0	3	100	25	25	0	150	4
	Data Structures										
CE360	Programming Lab	0	0	4	0	0	0	25	50	75	2
	Object Oriented										
CE370	Programming System Lab	0	0	4	0	0	0	25	50	75	2
HM001	Technical Communication	2	0	0	0	0	0	75	0	75	2
	Mathematics & II										
AC390	(Bridge Course)*	2	0	0	0	0	0	0	0	0	0
	<u>TOTAL</u>	19	2	8		500	125	175	100	900	23

<u>SEMESTER – III</u>

*Applicable to direct second year /lateral entry students **Term Work marks are to be awarded through continuous evaluation

Page 1 of 14

<u>LEGEND</u>

Abbreviation	Description
L	Lecture
Т	Tutorial
Р	Practical
0	Oral
Th	Theory
TW	Term Work
IA	Internal Assessment

Page 2 of 14

GOA UNIVERSITY – COMPUTER ENGINEERING CURRICULUM – SCHEME 2019-20

COMPUTER ENGINEERING COURSE SCHEME OF INSTRUCTION AND EXAMINATION REVISED COURSE 2019-2020

Course	Nomenclature of the	Sch Ins Hrs	eme truct s/We	e of tion eek	Scheme of	fExamination					
Lode	Course	т	т	п	Duration Marks					Credits	
		L	1	P	(Hrs)	Th	IA	TW*	Р	Total	
CE410	Discrete Mathematics	3	1	0	3	100	25	25	0	150	4
	Microprocessors &										
CE420	Microcontrollers	3	0	0	3	100	25	0	0	125	3
CE430	Formal Languages & Automata Theory	3	0	0	3	100	25	0	0	125	3
CE440	Modern Algorithm Design Foundation	3	0	0	3	100	25	0	0	125	3
CE450	Object Oriented Software Engineering	3	1	0	3	100	25	25	0	150	4
CE460	Modern Algorithm Design Foundation Lab	0	0	4	0	0	0	25	50	75	2
CE470	Microprocessors & Microcontrollers Lab	0	0	4	0	0	0	25	50	75	2
HM100	Economics for Engineers	3	0	0	3	100	25	0	0	125	3
	<u>TOTAL</u>	18	2	8		600	150	100	100	950	24

<u>SEMESTER – IV</u>

*Term Work marks are to be awarded through continuous evaluation

LEGEND

Abbreviation	Description
L	Lecture
Т	Tutorial
Р	Practical
0	Oral
Th	Theory
TW	Term Work
IA	Internal Assessment

GOA UNIVERSITY - COMPUTER ENGINEERING CURRICULUM - SCHEME 2019-20

MATHEMATHICS III

Course Code	CE310		Credits	4			
Scheme of Instruction	L	Т	Р	ТОТА	L		
Hours/ Week	3	1	0	40 hrs/sem			
Scheme of Examination	IA	TW	ТМ	Р	0		
TOTAL = 150 marks	25	25	100	0	0		

Course Outcomes:

The student will be able to:

CO1	Compute the rank, Eigen values and Eigen vectors of a given matrix, which will
	enable students to handle linear systems.
CO2	Compute Laplace transforms of real valued functions and apply it to solve integral
	and differential equations.
CO3	Compute Fourier transforms and Z-transforms and be able to apply it in their
	engineering studies.
CO4	Understand the basic concepts of probability, random variables, mean, variance,
	standard deviation and probability distributions.

UNIT -1				
MATRICES : Types of matrices, Determinant, inverse of matrix, Elementary				
transformations, Elementary matrices, Rank of matrix, Reduction to normal form,	10 hrs			
Canonical form, Rank using elementary transformation, Linear independence and				
dependence of vectors, System of the form $AX = 0$, and $AX = B$, and their				
solutions, Eigen values, Eigen vectors with properties, Cayley-Hamilton theorem				
with its applications, minimal polynomial, Diagonalization.				
UNIT -2				
LAPLACE TRANSFORMS: Definition. Existence conditions, properties, inverse Laplace				
transforms. Laplace transform of periodic functions, Convolution theorem, Laplace	10 hrs			
transform of Dirac-Delta function, Application of Laplace transforms in solving linear				
differential equations with initial conditions and system of linear simultaneous differential				
equations.				
UNIT -3				
FOURIER TRANSFORM : Fourier Transform, Inverse Fourier transform, Fourier				
Sine and Cosine transform				
Convolution and application.				
Z-TRANSFORM: Definition, region of convergence, properties, Z-transform on				
impulse function, Convolution theorem, application to difference equations.				
UNIT -4				
PROBABILITY: Definition, properties, Axioms of probability, conditional probability,	10 hrs			
theorem on total probability, Bayes theorem; Random variables-discrete & continuous;				
Expectation and Variance, Standard deviation, Moment Generating Function &				
properties, Standard distributions: discrete-Binomial, Geometric & Poisson; continuous-				
Uniform, Normal, exponential.				

TEXTBOOKS

1	B. S. Grewal; Higher Engineering Mathematics; Khanna Publications, New Delhi.
2	Erwin Kreyzing; Advanced Engineering Mathematic; New International Limited.
RE	FERENCES
1	P. Kandasamy; Engineering Mathematics; Chand & Co., New Delhi.
2	Srimanta Pal, Subodh C. Bhunia; Engineering Mathematics; Oxford University Press
3	D. S. Chandrasekhraiah; Engineering Mathematics- Part III ; Prism Books Pvt. Ltd.
4	Montgomery, D. C., Probability and Statistics for Engineers; Prentice Hall of India.

LOGIC DESIGN								
Course Code	CE320		Credits	3				
Scheme of Instruction	L	Т	Р	TOTAL				
Hours/ Week	3	0	0	40 Hrs/	sem			
Scheme of Examination	IA	TW	TM	Р	0			
TOTAL = 125 marks	25	0	100	0	0			

CO1	Convert the numbers from one radix to another and perform arithmetic operations using Complement Arithmetic.
CO2	Solve Boolean Expressions using Boolean algebra, K-maps and VEM and implement them using logic gates. Design any given combinational circuits and explain their applications.
CO3	Explain different flip flops, registers and their applications.
CO4	Design sequential circuits, state machines , synchronous and asynchronous counter circuits

UNIT -1	
Introduction: Digital and analog systems, Logic levels and Pulse Waveforms. Number systems – Decimal, Binary, Representation of Signed numbers and binary arithmetic, Octal number system, Hexadecimal number system. Binary codes – Classification, 8421 BCD code, XS-3 code, Gray code, Error correction and detection codes. Logic gates-AND, OR, NOT, Universal, X- OR,X-NOR gates.	10 hrs
Boolean algebra: Logic operations, Laws of Boolean Algebra, Duality, Reducing Boolean expressions, Boolean functions and their representations, Boolean	
expressions in SOP and POS forms, Computation of total gate inputs, Boolean expressions and logic diagrams, Conversion of AOI to NAND / NOR logic.	
UNIT -2	
Minimization of Switching Functions: Two, Three, Four variable K-Map, Don't Care Combinations, Quine- McCluskey method. Combinational logic Design: Adders, Subtractors, Binary Parallel Adder/ Subtractor, Look Ahead Carry Adder, Code Converters, Parity generators/checkers, Comparators, Encoders, Decoders, Multiplexers and De-multiplexers, Modular design using IC chips.	10 hrs
UNIT -3	
Flip-flops: Classification of Sequential Circuits, Latches & flip-flops - D flip- flop, JK flip-flop, T flip-flop. Flip-flop operating characteristics, Race around condition, Master slave flip-flop, conversion of one flip-flop to another, Applications of flip-flop.	10 hrs

Shift Registers: Buffer register, Data Transmission in Shift Registers, Serial-In Serial-Out Shift register, Serial-In Parallel-Out Shift register, Parallel-In Serial-Out Shift register, Parallel-In Parallel-Out Shift register, Bidirectional shift register, Universal Shift register, Applications of Shift register.	
UNIT -4	
Counters: Asynchronous counters, Design of asynchronous counters, Synchronous counters, Shift register counters. Sequential Circuits : Finite state model, Memory elements, Synthesis of synchronous sequential circuits, Serial Binary Adders, Sequence Detector.	10 hrs

TE	XTBOOKS
1	A. Anand Kumar; Fundamentals of Digital circuits; PHI, Second Edition
2	Thomas L. Floyd; Digital Fundamentals; Prentice Hall.
RE	FERENCES
1	Morris Mano; Digital Logic and Computer Design; PHI Publication.
2	Malvino& Leach; Digital Principles and Applications; TMH Publication.
3	R. P. Jain; Modern Digital Electronics; TMH Publication.

DATA STRUCTURES

Course Code	CE330		Credits	3	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	3	0	0	40 hrs/	sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 125 marks	25	0	100	0	0

Course Outcomes:

CO1	Demonstrate the use of data structures like linked lists, stacks and queues	
CO2	Explain the applications of linked lists, stacks and queues in Computer	
	Engineering	
CO3	Apply the knowledge of data structures to a given problem.	
CO4	Illustrate searching, sorting and hashing techniques.	

UNIT -1	
Introduction to Data Structures: Linear and Non Linear Data Structures. Linked lists: Concept of Linked Lists. Singly linked lists and its operations Stacks: Basic Stack Operations, Array implementation of Stacks , Polish Notation- Introduction to infix, prefix and postfix expressions Application of Stacks: Conversion of Infix to Postfix, Evaluation of Postfix expression Queues: Basic Queue Operations, Array implementation of Queues, Circular Queues. Application of Queues: Implementation of a palindrome	10 hrs
UNIT -2	
Linked list based implementation of Stacks, Linked list based implementation of Queues Doubly linked lists and circular linked lists and their operations Application of Linked Lists: Addition of two polynomials Binary Trees: Terms associated with binary trees, Strictly binary, Complete binary, Almost complete binary tree, Representation of trees - Linked array representation and Implicit array representation, Traversal in Binary Tree: Preorder, in-order, post-order and Level order traversal. Binary search tree - Insert, Delete, Search.	10 hrs
UNIT -3	
Threaded Binary tree – Insertion and Deletion in-threaded binary tree, Traversal: Inorder traversal of in-threaded binary tree, Preorder traversal of in-threaded binary tree	10 hrs
B-tree: Searching, Insertion, Deletion from leaf node and non-leaf node. Graphs: Directed and undirected graphs, graph terminology, Adjacency matrix, Adjacency list, Graph Traversals - Breadth First Search, Depth First Search.	

UNIT -4	
Searching: Linear Search, Binary Search	10 hrs
Hashing: Hash functions, Collision resolution techniques	
Study of different sorting techniques: Bubble Sort, Selection Sort, Insertion Sort, Radix	
Sort, Mergesort, Heap sort, Shell sort	

TE	XTBOOKS
1	S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.
2	Aaron M. Tenenbaum; Data Structures using C; Pearson Education India
RE	FERENCES
1	Ellis Horowitz and SartajSahni, Fundamentals of Data Structures, Galgotia Book Source, Gurgaon, First edition/Recent edition.
2	Mark Allen Weiss, Data Structures and Algorithm Analysis in C, Pearson Education, 2 nd Edition.
3	Gregory L. Heilman, Data Structures, Algorithms and Object Oriented Programming, Tata Mcgraw-Hill, New Delhi, 2002.
4	Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to Data Structures with Applications, Second Edition, Tata McGraw-Hill, New Delhi, 1991.
5	Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, Data Structures and Algorithms, Pearson Education, New Delhi, 2006.

OBJECT ORIENTED PROGRAMMING SYSTEM					
Course Code	CE340		Credits	3	
Scheme of Instruction	L	Т	Р	TOTA	L
Hours/ Week	3	0	0	40 hrs/	sem
Scheme of Examination	IA	TW	ТМ	Р	0
TOTAL = 125 marks	25	0	100	0	0

CO1	Design algorithms using principles of object oriented programming.
CO2	Demonstrate the concepts of data abstraction, encapsulation, code-reusability and data hiding using 'C++".
CO3	Explain the applications of polymorphism and inheritance in object oriented programming.
CO4	Apply the knowledge of standard template library achieve reusability

UNIT -1	
Basic concepts of Object-Oriented Programming: Objects, Classes, Data Abstraction and Encapsulation, Inheritance, Polymorphism, Dynamic Binding, Message Passing. Benefits of Object-Oriented Programming. Structure of a C++ program, Data types, Constants, tokens, expressions, control structures, functions, recursion, arrays.	10 hrs
UNIT -2	
Classes and Objects, Constructors and destructors, Friend functions and friend classes, Concepts of polymorphism: Function overloading, operator overloading. Overloading types, & rules, explicit & implicit type conversion operators, Pointers.	10 hrs
UNIT -3	
Inheritance: Introduction, Single, Multilevel, Multiple, Hierarchical, Hybrid. Virtual Base Class, Abstract classes. 'this' pointer, pointers to deriver classes Virtual functions, pure virtual functions. I/O streams and classes, managing output with Manipulators, Classes for file streams, file I/O operations and functions. String processing.	10 hrs
UNIT -4	
Functions Templates and Class Templates, Exception handling: Basics of Exception Handling, Exception Handling mechanism, Throwing Mechanism, Catching mechanism, Re-throwing mechanism. Introduction to the Standard Template Library: Components of STL, Containers and Adapter: stack, queue, priority queue adapter algorithms, Iterators, Applications.	10 hrs

TE	XTBOOKS
1	Paul Deitel and HarreyDietel; C++, How to Program; seventh edition.
2	E Balaguruswamy; Object oriented programming with C++; Tata McGraw Hill. 6 th
	edition
RE	FERENCES
1	K R Venugopal, Rajkumar, T. Ravishankar; Mastering C++; Tata McGraw Hill.
2	Stanley Lippman; C++ Primer; Fifth edition.
3	Herbert Schildt; Complete Reference; Fourth edition.
4	BjarneStroustrup; C++ Programming Language; Fourth edition.
5	D Ravichandran; Programming with C++; Third Edition.
L	

	COMPU	JTER ORG	GANISATION		
Course Code	CE340		Credits	4	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	3	1	0	40 hrs/	sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 150 marks	25	25	100	0	0

The student will be able to:

CO1	Identify high performance architecture designand perform different computer arithmetic operations.
CO2	Create an assembly language program to program a microprocessor system.
CO3	Design a pipeline for consistent execution of instructions with minimum hazards.
CO4	Demonstrate memory hierarchy and its impact on computer cost/performance.

UNIT -1	
Introduction to Computer Organization: Computer components, Functions,	10 hrs
interconnection Structure, Bus Interconnection. Computer Arithmetic: Integer	
Representation-unsigned numbers, signed numbers, signed magnitude, 2's	
compliment, Biased Representation. Integer Arithmetic: Addition, Subtraction,	
Multiplication unsigned, signed (Booths Algorithm), Division- unsigned, signed.	
Floating-Point Representation: IEEE 32 bits, 64 bits. Floating-Point Arithmetic:	
Addition, Subtraction, Multiplication, Division.	
UNIT -2	
Internal Memory: Semiconductor Memory - Memory Hierarchy, Characteristics of	
Memory System, Semiconductor RAM Memories, Internal Organization of Memory	10 hrs
Chip, Static RAM, Asynchronous DRAM, Synchronous DRAM, Connection of Memory	
to the processor, RAM Bus memory. Cache Memory: Basics of Cache, Structure, Read	
operation, Elements of Cache Design. Associative Memory: External Memory: Magnetic	
Disk, RAID, Optical Memory. Virtual Memory: Logical VS Physical Address space,	
working Principle, Mapping Functions, Replacement Policy.	
operators, Pointers.	

UNIT -3	
Input/Output: External Devices, I/O Modules, Programmed I/O, Interrupt Driven I/O, Direct Memory Access, I/O Channel and Processor. CPU Structure and Functions: Processor Organization, Register Organization, Instruction Pipeline, Basic Concepts of Pipelining. RISC CPU Architecture: Instruction Execution Characteristics, Use of Large Register File, Compiler based register optimization, Reduced Instruction Set Architecture, RISC v/s CISC.	10 hrs
UNIT -4	
Buses: Bus interconnections, VGA, Asynchronous v/s Synchronous Buses, PCI Bus, SCSI Control Unit Operation: Micro Operations, Control of the CPU, Hardwired Implementation Micro programmed Control: Basic Concepts, Microinstruction Sequencing, and Microinstruction Execution. Parallel Processing: Multi Processing, Cache Coherence /MESI Protocol.	10 hrs

TE	XTBOOKS
1	William Stalling; A textbook of Computer Organization and Architecture; Edition VI.
2	David A. Patterson, John L. Hennesy ; Computer Organization And Design, Edition III.
RE	FERENCES
1	M. Morris Mano ; A textbook of Computer Organization and Architecture.
2	Douglas V. Hall ; Microprocessors and Interfacing.
3	Carl Hamacher, ZvonkoVranesic, SafalZaky ; Computer Organization; Edition

	Data Stru	ctures Pro	ogramming L	ab	
Course Code	CE360		Credits	2	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	0	0	4	28 hrs/s	sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 75 marks	0	25	0	50	0

At least impleme	8 experiments out of below mentioned set are to be ented using C	
1.	Implementation of Stack and Queue using Arrays.	
2.	Implementation of Stack and Queue using Linked lists.	
3.	Application of Stack: Infix to postfix Conversion, Postfix evaluation.	
4.	Implementation of Doubly Linked Lists .	
5.	Implementation of Circular Queues using Linked lists.	
6.	Implementation of Binary Search tree & its Operations & Traversals.	
7.	Implementation of Threaded Binary Search Tree.	
8.	Implementation of AVL Tree.	
9.	Implementation of Graph representations and Graph traversal techniques.	
1(). Implementation of Search techniques: Linear Search and Binary Search.	
11	. Implementation of Sorting techniques: Insertion Sort and Heap Sort.	
12	2. Implementation of Sorting techniques: Merge Sort and Quick Sort.	
13	B. Implementation of hash collision resolution techniques.	
	• •	

	Object Orie	nted Pro	ogramming L	ab	
Course Code	CE370		Credits	2	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	0	0	4	28 hrs/sem	
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 75 marks	0	25	0	50	0

At least 8 inclusive	experiments out of below mentioned set are to be implemented of mini-project using OOP paradigm
1.	Basics of C++ (input /output / control statements / array).
2.	Classes and objects.
3.	Constructors and Destructors.
4.	Function Overloading.
5.	Operator Overloading.
6.	Inheritance and Polymorphism.
7.	Console I/O and Files.
8.	Templates.
9.	Exception Handling.
10	. Standard Template Library.
11	. Mini project using OOP paradigm

Т	ECHNICAL CO	MMUNICA	ΓΙΟΝ		
Course Code	HM001		Credits	2	
Scheme of Instruction	L	Т	Р	TOTA	L
Hours/ Week	2	0	0	2	
Scheme of Examination	IA	TW	TM	P	0
TOTAL = 75 marks	0	75	0	0	0

The student will be able to:

CO1	Demonstrate precise language skills with suitable vocabulary and apt style.
CO2	Develop life skills/interpersonal skills to progress professionally.
CO3	Apply traits of suitable candidature for a job/higher education.
CO4	Deliver formal presentations and effectively implementing the verbal and non-verbal skills.

UNIT -1	7
Communication	
Oral Communication	
Listening, Speaking, Reading, Writing (LSRW), Conversational Dialogues, Role Play, Barriers	
to Oral Communication, Effective Oral Communication, Principles of Communication, Dos and	
Don'ts of Group Discussion	
Global Communication	
Social Media, People Analytics, Models of Culture, Cross-Cultural Communication, Compare	
Cultures of the World, Impact of Cultural Differences on Managerial Communication, Effective	
Communicator in a Cross-Cultural setting	
UNIT -2	7
Personality Development	
Social Etiquette, Email Etiquette, Table Etiquette, Telephone Etiquette, SWOC Analysis, Life	
Coaching, Emotional Intelligence, Leadership, Time Management, Motivation, Goal Setting,	
Team Work and Collaboration, Critical Thinking and Problem Solving, Professional Attitude,	
Persuasion, Anxiety and Stress Management, Social Responsibility	
UNIT -3	6
Career Development	
Resume Building, Interviewing Skills, Job Search, Personal Networking and Branding,	
Personal Finance, Build Professional Portfolio	
UNIT -4	6
Public Speaking	
Methods to overcome anxiety, Build Confidence, Use of Media Aids, Craft an Impactful	
Speech, Design Impactful Presentations, Effective Presentation Delivery	

TE	CXTBOOKS
1	Meenakshi Raman and Sangeeta Sharma; Technical Communication: Principles and
	Practice, 3 rd ed; Oxford University Press
2	Meenakshi Raman, Prakash Singh; Business Communication; 2 nd ed.; Oxford University

	Press
3	Dr. K. Alex; Soft Skills: Know Yourself and Know The World; 3rded; S. Chand Publishing
RF	EFERENCES
1	Nicky Stanton; Mastering Communication; 5th ed.; Palgrave Master Series; Red Globe
	Press
2	Ghosh, B. N.; Managing Soft Skills for Personality Development; Tata McGraw Hill;
	2012
3	Wallace and Masters; Personal Development for Life and Work;10 th edition; Thomson
	Learning
4	Lehman, Dufrene, Sinha; BCOM : A South-Asian Perspective with CourseMate;
	2 nd edition; Cengage Learning
5	Ashraf Rizvi; Effective Technical Communication; Tata McGraw-Hill; 2005
6	MolefiKete Asante, William B. Gudykunst, Bella Mody; Handbook of International and
	Intercultural Communication; 2 nd ed.; Sage Publications

MATHEMATICS-I& II (BRIDGE COURSE)					
Course Code	AC39	90	Credits	0	
Scheme of Instruction	L	Т	Р	ТОТ	AL
Hours/ Week	2	0	0	28 hrs	/sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 0 marks	0	0	0	0	0

Course Outline:

This is an audit course.

This course is compulsory to direct second year/lateral entry students. It is introduced to reduce the knowledge gap in the students.

The syllabus is selected topics from FE110 Mathematics I and FE120 Mathematics II.

The Text books and References are same as shown in FE110 Mathematics I and FE120 Mathematics II.

GOA UNIVERSITY – COMPUTER ENGINEERING CURRICULUM – SYLLABUS 2019-20

DISC	RETE MAT	THEMATI	CAL STRUC	CTURES	
Course Code	CE410		Credits	4	
Scheme of Instruction	L	Т	Р	TOTA	L
Hours/ Week	3	1	0	40 hrs/sem	
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 150 marks	25	25	100	0	0

Г

CO1	Well versed with relations and its various types, including module congruencies relations, which are widely used in computer sciences.
CO2	Well versed in propositional calculus and predicate calculus. Principals of mathematical inductions and Boolean algebra.
CO3	Well versed with the various counting techniques including pigeonhole principle, generating functions and recurrence relations.
CO4	Well versed with graphs and its various types such as Eulerian, Hamiltonian graphs, trees and its applications.

UNIT -1	
 Set Theory: Sets, Set Operations, Relations and their properties, Equivalence Relations, partial orderings. Functions: One-to-One and Onto Functions, Inverse Function, Composition of functions, some important functions in computer science. Integers: Integers and division (excluding applications of congruences and 	10 hrs
cryptology), primes and greatest common divisors, Integers and algorithms.	
UNIT -2	
 Propositional Calculus: Propositional logic, propositional equivalences, predicates and quantifiers, rules of inference. Boolean Algebra: Boolean functions, representing Boolean functions. Mathematical Induction: Principle of Mathematical Induction and applications. 	10 hrs
UNIT -3	
Counting: The basics of counting, permutations and combinations, binomial coefficients, pigeonhole principle. Advanced Counting Techniques: inclusion –exclusion principle, applications of inclusion –exclusion principle, generating functions, and Recurrence relations,	10 hrs
solving linear recurrence relations.	
UNIT -4	
Graph theory: Graphs and graph models, graph terminology and special types of graphs, representing graphs and graph isomorphism, connectivity, Euler and	10 hrs

Hamilton paths, shortest path problems, planar graphs, graph coloring. **Trees:** Introduction to Trees, applications of trees, tree traversal, Spanning Trees, Minimal Spanning Trees.

TE	XTBOOKS
1	Kenneth H. Rosen; Discrete Mathematics and Its Applications; Tata McGraw Hill (6th
	edition).
2	B Kolman, R.C. Busby and Sharon C. Ross; Discrete Mathematical Structures;
	Prentice Hall
RE	FERENCES
1	J. P. Tremblay and R. Manohar, McGraw Hill; Discrete Mathematical Structures with
	Applications to Computer Science; New York McGraw Hill.
2	Swapan Kumar Sarkar; Discrete Mathematics; S. Chand Publication.
3	Dr. D. S. C ; Discrete Mathematical Structures; Prism Books Pvt. Ltd.
_	
4	G.V.Kumbhojkar; Discrete Structures And Graph Theory; Pradeep Prakashan.

MICROPROCESSORS & MICROCONTROLLERS					
Course Code	CE420		Credits	3	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	3	0	0	40 hrs/	sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 125 marks	25	0	100	0	0

CO1	To apply the assembly language programming to develop small real life embedded application.
CO2	To understand the architecture of the advanced processor thoroughly to use the resources for programming
CO3	To understand the higher processor architectures descended from 80386 architecture
CO4	To understand architecture and programming model of 8051 microcontroller with interfacing requirement

Systems Architecture- Systems Registers, Systems Instructions. Memory	10 h
Organization and Sagmantation Clabel Descriptor Table Level Descriptor	101
Organization and Segmentation- Global Descriptor Table, Local Descriptor	10 nrs
Table, Interrupt Descriptor Table, Data Types, Registers, Instruction Format,	
Operand Selection, Interrupts and Exceptions Applications Instruction Set- Data	
Movement Instructions, Binary Arithmetic Instructions, Decimal Arithmetic	
Instructions, Logical Instructions, Control Transfer Instructions, String and	
Character Transfer Instructions, Instructions for Block Structured Language, Flag	
Control Instructions, Coprocessor Interface Instructions, Segment Register	
Instructions, Miscellaneous Instructions.	
UNIT -2	
Memory Management- Segment Translation, Page Translation, Combining	
Segment and Page Translation. Protection- Need of Protection, Overview of 1	10 hrs
80386DX Protection Mechanisms, Segment Level Protection, Page Level	
Protection, Combining Segment and Page Level Protection. Multitasking- Task	
State Segment, TSS Descriptor, Task Register, Task Gate Descriptor, Task	
Switching, Task Linking, Task Address Space. Input-Output- I/O Addressing,	
I/O Instructions, Protection and I/O Exceptions and Interrupts- Identifying	
Interrupts, Enabling and Disabling Interrupts, Priority among Simultaneous	
Interrupts and Exceptions, Interrupt Descriptor Table (IDT), IDT Descriptors,	
Interrupt Tasks and Interrupt Procedures, Error Code, and Exception Conditions.	
UNIT -3	

Initialization- Processor State after Reset, Software Initialization for Real	10 hrs	
Address Mode, Switching to Protected Mode, Software Initialization for Protected		
Mode, Initialization Example, TLB Testing Debugging- Debugging Features of		
the Architecture, Debug Registers, Debug Exceptions, Breakpoint Exception		
Virtual 8086 Mode- Executing 8086 Code, Structure of V86 Stack, Entering and		
Leaving Virtual 8086 Mode. 80387 NDP- Control Register bits for Coprocessor		
support, 80387 Register Stack, Data Types, Load and Store Instructions,		
Trigonometric and Transcendental Instructions, Interfacing signals of 80386DX		
with 80387		
UNIT -4		
Architecture of 8051 - Special Function Registers(SFRs) - I/O Pins Ports and Circuits -	10 hrs	
Instruction set - Addressing modes - Assembly language programming. Programming		
8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard		
Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper		
Motor and Waveform generation.		

TE	XTBOOKS
1	Brey, Barry B, -8086/8088, 80286, 80386 and 80486 Assembly Language
	Programmingl, Prentice Hall, ISBN: 13: 9780023142475.
2	Mohammad Rafiquzzaman,Microprocessors: Theory and Applications: Intel and
	Motorola", Prentice Hall, ISBN:-10:0966498011, 13:978:0966498011.
RE	FERENCES
1	Microcontrollers -hardware ,architecture, programming- By Kenneth Ayala ,Second
	edition
2	James Turley, —Advanced 80386 Programming Techniques, McGraw-Hill, ISBN: 10:
	0078813425, 13: 978-0078813429.
3	Walter A. Triebel, -The 80386Dx Microprocessor: Hardwarel, Software, and
	Interfacing, Pearson Education, ISBN: 0137877307, 9780137877300.
4	Muhammad Ali Mazidi, Janice Mazidi, DannyCausey -The x86 PC Assembly
	Language, Design and Interfacing, Fifth Edition, Pearson publications. ISBN 978-93-
	325-8404-4.Intel 80386 Programmer's Reference Manual 1986, Intel Corporation,
	Order no.: 231630- 011, December 1995.

FORMAL LANGUAGE AND AUTOMATA THEORY					
CE430		Credits	3		
L	Т	Р	ТОТА	L	
3	0	0	40 hrs/	sem	
IA	TW	TM	Р	0	
25	0	100	0	0	
	L LANGUA CE430 L 3 IA 25	L LANGUAGE AND CE430 L T 3 0 IA TW 25 0	L LANGUAGE AND AUTOMATACE430CreditsLTP300IATWTM250100	L LANGUAGE AND AUTOMATA THEOCE430Credits3LTPTOTA30040 hrs/IATWTMP2501000	

CO1	Identify formal language classes and explain the properties of languages,
	grammars and automata.
CO2	Apply the techniques to transform between equivalent deterministic and
	non-deterministic finite automata and regular expressions.
CO3	Design grammars and automata (recognizers) for different language
	classes.
	Perform the Simplification of automata and Context free grammars.
CO4	Explain the concepts of context-free languages, pushdown automata and Turing
	recognizable languages.

UNIT -1	
Introduction: Languages, Grammars and Automata. Finite Automata: Deterministic Finite Accepters, Nondeterministic Finite Accepters, Equivalence of Deterministic and Nondeterministic Finite Accepters, Reduction of the Number of States in Finite Automata.	10 hrs
UNIT -2	
Regular Languages and Regular Grammars: Regular Expressions, Connection Between Regular Expressions and Regular Languages, Regular Grammars, Closure properties of Regular languages, A Pumping Lemma for regular languages. Finite State Transducers: Mealy Machine, Moore Machine, Moore and Mealy Machine Equivalence.	10 hrs
UNIT -3	
Context-Free Languages: Examples of Context Free Languages, Leftmost and Rightmost Derivations, Derivation Trees, Parsing and Ambiguity, Methods for Transforming Context Free Grammars, Chomsky Normal Form, and GreibachNormal Form. Nondeterministic Pushdown Automata, Pushdown Automata and Context-Free Languages, Deterministic Pushdown Automata, Pumping Lemma for Context-Free Languages. Closure of Context Free languages.	10 hrs
UNIT -4	
Turing Machine: Standard Turing Machine, Combining Turing `s for Complicated Tasks, Turing's Thesis. Turing Machines with More Complex Storage. Nondeterministic Turing Machines. A Universal Turing Machine. Linear Bounded Automata. Computability and Decidability: Turing Machine Halting Problem. Unrestricted Grammars, Context- Sensitive Grammars.	10 hrs

TE	XTBOOKS
1	Peter Linz; An introduction to Formal Languages and Automata; Jones & Bartlett
	Learning, 2006
2	John C Martin; Introduction to languages and the theory of computation; Tata
	McGraw Hill, Fourth Edition, 2010.
RE	FERENCES
1	John E. Hopcraft and Jeffery D. Ullman; Introduction to Automata Theory,
	Languages and Computation; Narosa Publishing House.
2	Michael Sipser; Introduction to Theory of Computation; PWS Publishing
	Company.
3	A.A Puntambekar; Formal Languages and Automata Theory; Technical
	Publications Pune.
4	K.L.P Mishra, N. Chandrasekaran; Theory of Computer Science – Automata,
	languages and Computation; PHI Publications; Third Edition ; 2008.

MODERN ALGORITHM DESIGN FOUNDATION					
Course Code	CE440		Credits	3	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	3	0	0	40 hrs/sem	
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 125 marks	25	0	100	0	0

CO1	Demonstrate how the different algorithm design approaches are used to solve various classes of engineering problems.
CO2	Compute and analyze the time and space complexities of algorithms and understand their rate of growth.
CO3	Implement the algorithms with help of different data structures.
CO4	Describe the different algorithm classes P, NP, and NP-Complete, Randomized, Probabilistic, Approximation.

UNIT -1	
Introduction: Algorithm Specification, Performance Analysis, and Analyzing of algorithms: Insertion sort, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method and Masters' theorem. Divide and Conquer: General method, Binary search, Finding the min and max, Merge sort, Quick sort: Sorting by partitioning, Selection: Finding the kth smallest element. Stasson's Matrix Multiplication	10 hrs
INIT -2	
Greedy Method: General Method, Knapsack Problem, Minimum cost Spanning tree, Single soured shortest path. Dynamic Programming: General Method, Multistage Graphs, All pair shortest paths, Single source shortest path with general weights, Optimal Binary Search Tree, 0/1 knapsack problem, Travelling salesperson problem.	10 hrs
UNIT -3	
Backtracking: General Method, n-queens problem, Sum of subsets problem, graph colouring, Hamiltonian Cycles, 0/1 knapsack problem. Branch-and- Bound: General Method, 0/1 knapsack, Travelling salesperson problem.	10 hrs
UNIT -4	
Internet Algorithms: String and pattern matching, Tries, Text compression, Text similarity testing.NP-hard and NP-complete problems: Basic concepts, Cooks theorem, Introduction: Randomized Algorithms, Probabilistic	10 hrs

TE	XTBOOKS		
1	Fundamentals of Computer Algorithms – E. Horowitz et al, 2nd Edition UP.		
2	Introduction to Algorithms, 3th Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.		
RE	FERENCES		
1	Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.		
2	Fundamentals of Algorithmics, Gilles Brassard, Paul Bratley, PHI		
3	Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.		
4	Algorithms A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA.		

OBJECT ORIENTED SOFTWARE ENGINEERING					
Course Code	CE450		Credits	4	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	3	1	0	40 hrs/sem	
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 150 marks	25	25	100	0	0

CO1	Specify a software system.
CO2	Create an object-oriented design for object oriented software engineering.
CO3	Implement with readable, reusable, modular, object-oriented techniques.
CO4	Test for validity, correctness and completenessand understand .software
	management process

UNIT -1	
Introduction to Software Engineering:Scope of software engineering-	10 hrs
Historical aspects, Economic aspects, Maintenance aspects, Specification and	10 1115
design aspects, Team programming aspects.	
The Software Process- Client, Developer and User Phases of SDLC Life Cycle,	
Requirement phase, Specification phase, Design phase, Implementation phase	
Integration phase, Maintenance phase, Software Life Cycle Models Build and	
Fix Model, Waterfall, Rapid Prototyping Model, Incremental Model, Extreme	
Programming, Synchronize and Stabilize Model, Spiral Model, Object Oriented	
Life Cycle Model.	
Software Metrics Capability Maturity Model.	
Estimating Duration and Cost Metrics for size of product, Techniques for cost	
estimation and models, Teams : Team Organization Democratic Team Approach,	
Classical chief Programmer Team Approach, Synchronize and Stabilize Teams	
UNIT -2	
Object Oriented Software Engineering: Object Oriented System Development,	
Object Oriented Terminology, Types of Cohesion, Types of Coupling, Data	10 hrs
Encapsulation, Software re-usability, Portability, Interoperability, CASE tools in	
use for Object Oriented Software Engineering.	
Requirement Phase: Techniques for Requirement Elicitation and Analysis	
Metrics for Requirement Phase, Testing and CASE tools for Requirement Phase.	
Specification Phase: Specification Document, Metrics for Specification Phase,	
Testing and CASE tools for Specification Phase	
Analysis Phase: OO Analysis, Use Case Modeling, Class Modeling, Dynamic	
Modeling, Testing and CASE tools for Analysis Phase	
Design Phase: Action oriented Design and Abstraction, DFA, Data Oriented	
Design, Object Oriented Design, Testing and CASE tools for Design Phase	
UNIT -3	
Software Ouality Assurance: Ouality Concepts, Ouality Movement, Software	10 hrs
Reviews, Formal Technical Reviews, Formal Approaches to SOA, Statistical	

SQA, Software Reliability, SQA Plan			
Software Testing: Fundamentals, Test Case Designs, White Box Testing, Basic			
Path Testing, Control Structure Testing, Black Box Testing, Testing for			
Software Testing Strategies: Strategic Approach to Software Testing, Strategic			
Issues, Unit Testing, Integration Testing, Validation Testing, Organizational			
approaches to testing. Software testing tools- for classical engineering and object			
oriented angineering Software testing standards			
Oliver Oliver to I Tradient			
Object Oriented Testing			
UNIT -4			
Software Project management: Managing software project, Project planning Process	10 hrs		
planning- Standard process, Requirement change management, Quality Planning, Risk			
management, Project management plan, Team structure, Communication, Team			
development and configuration management Project execution Project monitoring and			
actes price Cleans Defermine elecure analysis Cleans englisis report			
control Project Closure, Performing closure analysis, Closure analysis report.			
	1		

TE	XTBOOKS
1	Object Oriented and Classical Software Engineering- Stephen R.Schah(TMH)
2	Software Project Management in practice- Pankaj Jalote- PEA
RE	FERENCES
1	Software Engineering – A practitioner's approach – by Roger S. Pressman, McGraw Hill
2	A discipline for Software Engineering – by Watts S. Humprey, Pearson Education
3	Software Engineering – by K. K. Aggarwal and Yogesh Singh, New Age Publications
4	'Ed-Kit'- Software testing in real world. Addison Wesley 1995
5	Effective methods for software testing(second edition) John-Wiley 1999
6	Software testing techniques(2 nd edition) Van Nostrand Rein loud 1990
7	The art of software testing, Jon Wiley Mayers G.J.

MODERN ALGORITHM DESIGN FOUNDATION LAB						
Course Code	CE460		Credits	2		
Scheme of Instruction	L	Т	Р	ТОТА	L	
Hours/ Week	0	0	4	28 hrs/sem		
Scheme of Examination	IA	TW	TM	Р	0	
TOTAL = 75 marks	0	25	0	50	0	

lea	st 8 experiments out of below mentioned set are to be implemented.
1.	Write a program to implement binary search using divide and conquer.
2.	Write a program to implement Merge Sort using divide and conquer.
3.	Write a program to implement Quick Sort using divide and conquer.
4.	Write a program to implement minimum cost spanning trees using greedy approach.
5.	Write a program to implement single source shortest path algorithm using greedy approach.
6.	Write a program to implement 0/1 knapsack problem using dynamic programming.
7.	Write a program to implement OBST using dynamic programming.
8.	Write a program to implement single source shortest path algorithm using dynamic programming.
9.	Write a program to implement sum of subset problem using backtracking.
10.	Write a program to implement graph colouring problem using backtracking.
11.	Write a program to implement pattern matching algorithms
12.	Write a program to implement text compression and text similarity testing.

MICROPROCESSORS & MICROCONTROLLERS LAB					
Course Code	CE460		Credits	2	
Scheme of Instruction	L	Т	Р	ТОТА	L
Hours/ Week	0	0	4	28 hrs/	sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 75 marks	0	25	0	50	0

At least 8 experiments out of below mentioned set are to be implemented inclusive of mini-project on 8051	
1. Write a program which illustrates the programming constructs of higher	
level language in 80386 assembly coding.	
2. Write a program which contains the following macros	
a. For calculating the Fibonacci series for N	
b. For entering the value of N.	
c. For displaying the numbers.	
3. Write above program using procedures.	
4. Write a procedure to implement the following sorting algorithms.	
a. Bubble Sort	
b. Insertion sort	
c. Selection sort.	
5. Write a program to implement the following searching algorithms.	
a. Linear Search	
b. Binary Search	
6. Write a procedures to implement the library routine to:	
a. Input integer number(Read integer number)	
b. Output Integer number(write Integer Number)	
c. Input string	
d. Output String	
7. Write a program to make use of int 10h for the following:	
a. Sets the video mode and clears the screen	
b. Makes a window of a specific size and color	
c. Sets the cursor at a specified position within the window.	
d. Displays 10 times the character '*' at the cursor position.	
8. Write a program to display 'Hello World' vertically downwards at the	
centre of the screen.	
9. Store a password in memory. Enter another password through the keyboard	1
and verify if it matches the stored password. The password entered should	
not be displayed as such , but each letter should be displayed as '*'.	
Mini Project on 8051 microcontroller for Hardware implementation of any one	
application.	

GOA UNIVERSITY - COMPUTER ENGINEERING CURRICULUM - SYLLABUS 2019-20

ECONOMICS FOR ENGINEERS					
Course Code	EE 470		Credits	3	
Scheme of Instruction	L	Т	Р	ТОТ	AL
Hours/ Week	3	0	0	40 hrs/	'sem
Scheme of Examination	IA	TW	TM	Р	0
TOTAL = 125 marks	25	0	100	0	0

After the successful completion of the course, the student will be able to:

CO1	To acquire the skills to apply the basics of economics to Engineering
CO2	To evaluate the economic theories, cost concepts and pricing policies
CO3	To calculate National Income, Inflation and Price Index
CO4	To evaluate the different measures of Economic Growth & Development.

UNIT 1	
Central concepts of Economics- Definitions of Economics, Scarcity and	10 Hours
Efficiency, Nature of Economics: Positive and normative economics,	
Microeconomics and Macroeconomics	
Basic Elements of Supply and Demand- The Demand Schedule, The Demand	
Curve, Market Demand, Forces behind the Demand Curve, Shifts in Demand.	
The Supply Schedule The Supply Curve, Forces behind the Supply Curve,	
Shifts in Supply. Equilibrium of Supply and Demand, Effect of a Shift in	
Supply or Demand. Supply and Demand: Elasticity and Applications to major	
economic issues	
Estimation/Forecasting of Demand: Meaning, importance, methods - trend,	
exponential smoothing, regression analysis	
UNIT 2 Missessessies Demond & Commune Debasisses Chains & Heiliter Theorem	10 11
Microeconomics: Demand & Consumer Benaviour- Choice & Utility Theory.	10 Hours
Production and Business Organization, Theory of Production and Marginal	
Products Basic Concepts, The Nature of the Firm, Big, Small, and Infinitesimal	
Businesses. Economic Analysis of Costs, Total Cost: Fixed and Variable.	
Production, Cost Theory, and Decisions of the Firm. Market structures. Perfect	
and imperfect competition, ongopory, monopory.	
UNIT 3	
Macroeconomics: Key Concepts of Macroeconomics, Objectives and	10 Hours
Instruments of Macroeconomics. Aggregate Supply and Demand.	
National Income Terms: -Gross Domestic Product: The Yardstick of an	
Economy's Performance Real vs. Nominal GDP Net Domestic Product GNP	
National Income, Per capita income, Disposable Income, Price Index, Inflation.	
Consumption and Investment- Consumption, Income, and Saving, Investment.	
Determinants of Investment.	
Monetary Policy and the Economy .Government Control of the Economy- The	
Tools of Government Policy	
UNIT 4	
Economic Growth and Development: Economic Growth- The Long-Term	10 Hours
Significance of Growth, The Four Wheels of Growth. Economic Development-	
meaning, criteria, measures of development- Per Capita Income, Index of	

Human Development .		
Financial markets- Structure, Participants, functions. Capital market-		
Instruments, Players, trading - Primary and secondary market - Role of stock		
exchanges and stock indices. Money market		

	Textbooks
1	P.A. Samuelson & W.D. Nordhaus, Economics, 19th Edition McGraw Hill, New
	York, 1995.
-	
2	A. Koutsoyiannis, Modern Microeconomics, Macmillan, 1975.
3	O.P. Khanna, Economics for Engineers, VK Global Publications Private Limited.
	References
1	Chandra P., Fundamentals of Financial Management, Tata McGraw Hill Education
	Private Limited, New Delhi