Robotics and Artificial Intelligence

Honors/Minor Degree program of Electronics and Computer Engineering / Electronics and Computer Science

Name of the Programme: Electronics and Computer Engineering / Electronics and Computer Science

Branch: Minor/ Honours (Specialization) Subject: Robotics and Artificial Intelligence

Course Code: RAI 601

Title of the Course: Robot Programming

Number of Credits: 04 (3L+1P)

Effective from AY: 2022-23

Pre-requisites	Introduction to Robotics and Programming Skills			
for the Course:				
Course	The subject aims to equip the student with:			
Objectives:	1. Understanding of the fundamentals of robotics, sensor and motor			
	technologies			
	2. Knowledge of integration of Arduino with Robotics			
	3. Introduction to Python programming languageand Linux	for		
	accessing and controlling simulated robots.			
	4. Comprehension and analysis of the robot Operating System.			
Content:	UNIT- I	No. of		
		Hrs.		
	Arduino for Robotics: Basics of Arduino Uno: Features, samples sketches on Reading and Writing data, Interfacing Arduino: Relays, Transistors, Interfacing a Motor-Controller, Contact Sensing, Distance and Reflection Sensing, Orientation (Positioning), Non-Autonomous Sensors Let's Get Moving: Electric Motors: Brushed DC Motor	12 Hrs.		
	(Permanent Magnet Type), Brushless Motors, Stepper Motors,			
	Servo Motors, H-Bridge IC, Interfacing of motors (dc, stepper			
	and servo)			
	UNIT-2			
	Introduction to Python: Python variables, Python basic Operators, Python blocks, Data Types, Declaring and using Numeric data types, Python Program Flow Control Conditional blocks: if, else and else if; For loops in python (using ranges, string, list and dictionaries); While loops in python, Loop manipulation using pass, continue, break and else; Programming using Python conditional and loop blocks. Python File Operations: Reading and writing files in python Introduction to Linux: Linux File System Directories, Linux File Permissions, Basic Linux Commands, Introduction to Linux Shell and Shell Scripting	11 Hrs.		

	UNIT-3	
	Robot Programming using ROS:Why Robot Programming Is Different? Capabilities of ROS frameworkNeed for Robot Software Platform, ROS as a Meta-Operating System, Objectives of ROS, Components of ROS, ROS Architecture and Concepts, Three levels of ROS: File system Level, Computation Graph Level, Community Level. ROS Ecosystem, History of ROS.ROS development environment, ROS Terminology, Message Communication, Message, Name, Coordinate Transformation (TF), Client Library, Communication between Heterogeneous devices, File System and Build System.	11 Hrs
	UNIT-4	
	ROS Shell Commands, ROS Execution Commands, ROS Information Commands Basic ROS Programming: Things to know before Programming ROS, Creating and Running Publisher and Subscriber nodes, Creating and Service Server and Client nodes, Writing and Running the Action Server and Client Node Working with 3D Robot Modelling in ROS: Understanding robot modelling using URDF Robot-Sensor-Motor: Robot Packages, Sensor Packages, Camera Laser Distance Sensor	11 Hrs.
Pedagogy:	Learner centric teaching	
References/ Readings:	 Textbooks: 1. John-David Warren, Josh Adams, Harald Molle Arduino Robot Apress, illustrated edition, 2011. 2. YoonSeokPyo, HanCheol Cho, RyuWoon Jung, TaeHoon Lim, Robot Programming, ROBOTIS Co.,Ltd. 2017 3. Jason M. O'Kane, A Gentle Introduction to ROS, CreateSpace 4. Wesley J. Chun, Core Python Applications Programming, Pear Education India; 3rd edition (1 January 2015). Refrences 1. Charles Dierbach, Introduction to Computer Science using Pyth Computational Problem-solving Focus, Wiley, 2015. 2. Jeeva Jose &P. Sojan Lal, Introduction to Computing and Prob Solving with PYTHON, Khanna Publishers, New Delhi, 2016. 	tics, ROS , 2014 rson thon: A olem
Contents for the Practical	 List of Experiments: (Minimum 10 Experiments to be performed from the following list) 1. Interfacing Arduino Uno with Analog and Digital Sensors (any 3) 2. Interfacing Arduino Uno with motors 3. Handling data types in Python 4. Conditional blocks in Python 5. Installing and Configuring Your ROS Environment 6. Navigating the ROS File system 	30 Hrs

	7. Creatin	g and Building ROS Package			
	8. Understanding ROS Nodes				
	9. Underst	9. Understanding ROS Topics and ROS messages			
	10. Und	10. Understanding ROS Services and Parameters			
	11. Writ	ing a Simple Publisher and Subscriber			
	12. Crea	ting and Running Service Servers and Client Nodes			
	13. Writ	ing and Running the Action Server and Client Node			
	14. Simu	lating Robots Using ROS and Gazebo			
	15. Usin	g the ROS Move It!			
Term work	Students h	ave to be evaluated based on assignments / class tests	s / mini-		
Rubrics	projects/ s	eminars / quiz / viva / presentations / circuit simulatio	ns, etc.		
Course	Upon comp	etion of the course, students will be able to			
Outcomes:	RAI 601.1	Explain the fundamentals of Arduino for Robotics			
	RAI 601.2	Interface Arduino with relays, sensors and motors			
	RAI 601.3	Apply and analyse the Python Programming for Robot	tics		
	RAI 601.4	Explain the basic concepts and components of ROS			
	RAI 601.5	Apply ROS for Robot Programming			

Name of the Programme: Electronics and Computer Engineering / Electronics and Computer Science

Branch: Minor/ Honours (Specialization) Subject: Robotics and Artificial Intelligence

Course Code: RAI 701 Title of the Course: Robotics Vision and Control

Number of Credits: 04 (3L+1P)

Effective from AY: 2024-25

Pre-requisites	Introduction to Robotics and Image Processing Fundamentals	
for the Course:		
Course	The subject aims to equip the student with:	
Objectives:	1. To apply Robotics to solve day-to-day problems using v	vision
	algorithms.	
	2. To learn and understand motion and path planning.	
	3. To analyse the kinematics parameters of robotic manipula	tor and
	Design a task plan.	
	4. To plan and execute tasks during robot locomotion.	
	5. To describe the kinematics and dynamics of moving robots.	-
Content:	UNIT- I	No. of Hrs.
	Machine Vision: Introduction, Low Level Vision, Sensing and	12 Hrs.
	Digitizing function, Imaging Devices, Lighting techniques, Image	
	storage, Image Preprocessing: Noise reduction and	
	Enhancement, Higher level vision: Segmentation, Thresholding,	
	Region growing, Edge detection, Object Description, Object	
	Recognition, Training the vision system, Applications of Vision	
	System.	
	UNIT-2	
	Find path problems using: Visibility Maps: The Visibility Graph definition and construction, Deformation Retracts: Generalised Voronoi diagram- GVD definition, Roadmap Properties, Deformation Retract Definition, GVD Dimension, Construction of GVD, Cell Decomposition- Trapezoidal decomposition, Morse cell decompositions, Visibility based decompositions for pursuit/evasion. Motion Planning: Optimal Control, Steering Chained-Form systems using sinusoids, nonlinear optimization, Gradient methods for driftless systems, Differentially flat systems, cars and cars pulling trailers, Kinematic reductions of mechanical systems.	11 Hrs.
	UNIT-3	
	Control System Analysis: Basics of Feedback Control, Stability analysis, Frequency Domain Analysis; Control System Design – State space representation, Internal Model Control, PID control. Control of Robot Manipulators –Introduction, Control of Puma Robot Arm, Computed Torque Technique, Near-minimum-time control, Variable structure control, Nonlinear decoupled feedback control. Resolved Motion control. Adaptive control	11 Hrs.

	UNIT-4			
	Robot Locomotion – Legged Robots and Wheeled Robots, 11	L		
	Mobile Robot Kinematics, Perception and Mobile Robot Hr	ſS.		
	Localization, Planning and Navigation.			
	Robot Intelligence and Task Planning- State space search,			
	Problem Reduction, Use of predicate logic, Means-ends			
	analysis, Problem Solving, Robot learning, Robot task planning,			
Dedegegy	Basic problems in Task Planning.			
Pedagogy:				
Readings:	1 Deb S.R. and Deb S. Robotics technology and flexible automatic	n		
Neaungs.	McGraw-Hill Education, 2nd Edition, 2010.	JII.		
	2. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A. and Burgard,	W.,		
	2005. Principles of robot motion: theory, algorithms, and	-		
	implementations. MIT press,2007.			
	3. C. S. George Lee, King-Sun Fu, Rafael C. GONZALES, Robotics: Cont	trol,		
	Sensing, Vision and Intelligence, McGraw-Hill Education, Edition 1987.			
	4. Nagoor Kani, Control System, 3rd edition, RBA Publication.			
	5. Siegwart R. and Nourbakhsh I.R., Introduction to Autonomous Mc	bile		
	Robots, MIT Press, Cambridge, MA, USA, 2004.			
	References			
	1. John J Craig; Introduction to Robotics, Mechanics and Control,	L. John J Craig; Introduction to Robotics, Mechanics and Control,		
	Pearson Education Inc Horn B.K.P., Robot Vision, MIT Press, 1986.			
	2. Peter C., Robotics, Vision and Control: Fundamental Algorithms in	. Peter C., Robotics, Vision and Control: Fundamental Algorithms in		
	MATLAB, Springer Tracts in Advanced Robotics, 2011.			
	3. Lewis F.L., Dawson D.M. and Abdallan C.T., Robot Manipulator			
	1 Siegwart R and Nourhakhsh I R Introduction to Autonomous Mobile			
	Robots MIT Press Cambridge MA LISA 2004 Godfrey O			
	Robols, MIT Press, Cambridge, MA, USA, 2004.Godirey U., Mechatronics: Principles and Applications, Elsevier, 2005			
	5. Murray R.M., Li Z. and Sastry S.S., A Mathematical Introduction to			
	Robotic Manipulation, CRC Press, 1994.			
	6. Correll N., Introduction to Autonomous Robots, v1.7, Magellan			
	Scientific, 2016. ISBN-13: 978-0692700877.			
	7. Berthold Klaus, Paul Horn "Robot vision" The MIT Press, 1987.			
	8. Godfrey O., Mechatronics: Principles and Applications, Elsevier, 20)05.		
Contents for the	List of Practicals : (Minimum 8 Experiments to be performed 30	Hrs		
Practical	from the following list)			
	1. Introduction to Open CV platform and its use in image			
	processing.			
	2. Detection of hand gestures and controlling the wheeled robot.			
	 Identifying colours and picking up the square cubes and 			
	rejecting the round ones			
	5. Pick and place robot with stacking of similar shape blocks			
	together.			
	6. Text recognition and controlling robot movement.			

	7. Line/road lane follower using image processing.				
	8. Face recognition and control of stepper motor to point to a				
	particula	r face.			
	9. Human p	pose detection			
Course	Upon comple	tion of the course, students will be able to			
Outcomes:	RAI701.1	Students will apply robotics and vision algorithms to solve			
		practical day-to-day problems effectively.			
	RAI701.2	Students will demonstrate a strong grasp of motion and			
		path planning principles in robotics.			
	RAI701.3	Students will master control system analysis and design,			
		enabling them to effectively control robot manipulators,			
		including the Puma Robot Arm, using advanced			
		techniques like PID control and adaptive control.			
	RAI701.4	Students will describe the kinematics and dynamics of			
		moving robots, understanding their underlying			
		mathematical and physical principles.			
		·			

Name of the Programme: Electronics and Computer Engineering / Electronics and

Computer Science

Branch: Minor/ Honours (Specialization) Subject: Robotics and Artificial Intelligence

Course Code: RAI 801Title of the Course: Special Topics in Artificial Intelligence.Number of Credits: 4 (4L+0P)

Effective from AY: 2024-25

Pre-requisites	Introduction to Fundamentals of Artificial Intelligence.				
for the Course:					
Course	The subject aims to equip the student with:				
Objectives:	1. Model autonomous systems as AI agents,				
	2. Formulate/solve relevant planning/ and tasks.				
	3. Insights in the computational challenges arising from uncertainty				
	4. Fundamentals of Markov decision process.	,			
	5. How to incorporate recent learning-based methods deci	sion-			
	making algorithms.				
	6 Concent of Reinforcement Learning and their application in the				
	domain of Robotics				
	7 Concepts of Imitation Learning and applications in Robotics				
Contont:		No. of			
content.	0111-1				
	Al Agente, Agente and Environmente Cood behaviour	пі з.			
	Al Agents: Agents and Environments, Good benaviour,	10			
	concept of rationality, Nature of Environments, Concepts of	Hrs.			
	rationality, Structure of Agents, Problem solving agents.				
	Motion Planning: Geometric representation and				
	transformations, Configuration space, sampling based motion				
	planning, combinatorial motion planning, feedback motion				
	pianning.				
	UNIT-2				
	State Estimation: Uncertainty in Robotics, Probabilistic	15			
	Robotics, implications, Robot environment interaction, Baye's	Hrs.			
	Filter. Time and uncertainity, inference in temporal models,				
	Hidden Markov models, uncertainty.				
	Task Planning: Classical Planning, Algorithms for Planning as				
	State Space approach, Planning Graphs, Other classical				
	planning approaches, analysis of planning approaches.				
	Finite Markov decision process: The Agent – Environment				
	interface. Goals and rewards, returns and episodes, unified				
	notation for episodic and continuing tasks, policies and value				
	functions, optimality and approximation				
-	UNIT-3				
	0.01 0	15			
	Reinforcement Learning for Robotics: Reinforcement Learning	Hrs			
	Evamples Elements of Reinforcement Learning Limitations	1113.			
	and scope Tic tactoe example				
	מות אנטףפ, דונ-נמנ-נטפ פאמוווףופ.				

	Multiarmed Bandits: A k-armed bandit problem, action value methods, The 10 armed testbed, incremental implementation, tracking a nonstationary problem, gradient bandit problems, associative search. Temporal difference Learning: TD prediction, Advantage of TD prediction methods, Optimality of TD(0), Sarsa: On policy TD control, Q Learning: Off policy TD control, Expected Sarsa, Minimization bias and double learning, Games, after states and other special cases.			
	Imitation Lea	rning. Key successes in imitation learning	15	
	imitation lear Difference bet statistical mai imitation learn	ning from the point of view of Robotics, ween imitation learning and supervised learning, chine learning fundamentals, formulation of ing problem.	Hrs.	
	Design of Im imitation learn reinforcement Imitation Le Representation	itation learning algorithms: Design choices for ning algorithm, behaviour cloning and inverse learning, Model-Free and Model-Based earning Methods, Observability, Policy n in Imitation Learning, Behaviour Descriptors.		
Pedagogy:	Learner centric	teaching		
References/	Textbooks:			
Readings:	 Russell, Stuart J., and Peter Norvig, Artificial intelligence: A modern approach. (3rd Edition) Prentice Hall. LaValle, S.M., Planning Algorithms 2006. Cambridge University Press. Richard Sutton and Andrew Barto. Reinforcement Learning (Second Edition). MIT Press. 2018. Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, Jan Peters , An Algorithmic Perspective on Imitation Learning ISBN-13 : 978-1680834109, Now Publishers Inc. 			
	References :			
	1. Thrun, Seba	stian, Wolfram Burgard, and Dieter Fox, Probabili	stic	
	robotics. (1	" Edition), MIT Press.		
	Z. Decision Ma	aking Under Uncertainty, Mykei Kochenderier, (1		
	3 Jan Goodfel	low Yoshua Bengio and Aaron Courville Deen		
	Learning.M	T Press. ISBN-13 : 978-0262035613		
	TERM WORK:			
	Assessment ca	n be in terms of assignments, simulation-based ex	ercises,	
	mini project, ca	ase studies, etc.		
Course	Upon completi	on of the course, students will be able to		
Outcomes:	RAI 801.1	Model autonomous systems as AI agents and per	form mo	
		planning		
	RAI 801.2	Formulate/solve relevant planning/estimation tag	sks	
	RAI 801.3	How to incorporate recent learning-based metho	ds decisi	

	making algorithms such as Reinforcement Learning in Rob	otics.
RAI 801.4	How to incorporate recent learning-based methods decisi	on-
	making algorithms such as Imitation Learning in Robotics.	