ATMANIRBHAR BHARAT Swayampurna goa

Goa University

Taleigao Plateau, Goa-403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website : www.unigoa.ac.in

ताळगांव पठार, गोंय -४०३ २०६ फोन : +९१-८६६९६०९०४८

गोंय विद्यापीठ

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP Engg. /2024-25/789

Date: 28.01.2025

Ref. No.: GU/Acad -PG/BoS -NEP Engg. /2024/644 dated 11.11.2024

In supersession to the above referred Circular, the Syllabus of Semester II of the **Master of Engineering (Computer Aided Structural Engineering)** Programme approved by the Academic Council in its meeting held on 06th December 2024 is attached herewith. The syllabus of Semester I approved earlier by the Academic Council in its meeting held on 22nd August 2024 is also attached.

The Dean, Faculty of Engineering and Principals of affiliated Colleges offering the **Master of Engineering (Computer Aided Structural Engineering)** Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

(Ashwin V. Lawande) Deputy Registrar – Academic

To,

- 1. The Dean, Faculty of Engineering, Goa University.
- 2. The Principals of affiliated Engineering Colleges.

Copy to,

- 1. The Director, Directorate of Technical Education, Govt. of Goa
- 2. The Chairperson, BoS in Civil Engineering.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar Examinations (Prof.), Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

	TWO YEAR PROGRAMME STRUCTURE					
	Semester I					
Sr	Course	Title of the Course	L	т	Р	Credits
INO.	Code	Dupping the state (DCC) Courses				
	000 500	Programme Specific Core (PSC) Courses	2	<u> </u>	_	
1	<u>COS-500</u>	Computational Structural Mechanics	3	0	0	3
2	<u>COS-501</u>	Duthon Programming	3	0	0	3
3	<u>COS-502</u>	Python Programming	4	0	0	4
4	<u>COS-503</u>	Computer Aided Structural Engineering Lab-1	0	0		1
5	<u>COS-504</u>	Computer Aided Structural Engineering Lab-2	0	0	T	1
6	COS 521	Numerical Techniques in Structural Engineering	2	1	0	4
0	<u>CO3-351</u>		5	L	0	4
7	COS-532	Structural Ontimization	2	1	0	4
-	<u>COJ-JJZ</u>	Research Specific Elective (RSE) Courses	5	-	0	4
8	RFC-561	Engineering Research & Publications	3	1	0	4
-	1120 501		5	-	Ŭ	•
9	REC-562	Literature Review & Technical Writing for Engineers	З	1	0	Δ
5	<u>NEC 502</u>		16	2	2	20
	Somostor II					
Sr	Course	Schestern				
No.	Code	Title of the Course	L	Т	Ρ	Credits
	Programme Specific Core (PSC) Courses					
1		Advanced Design of Reinforced Concrete and	2	0	0	2
1	<u>CO3-505</u>	Prestressed Structures	5	U	U	5
2	<u>COS-506</u>	Computer Aided Structural Engineering Lab-3	0	0	1	1
3	<u>COS-507</u>	Theory of Thin Plates & Shells	3	0	0	3
4	<u>COS-508</u>	Computational Structural Dynamics	3	0	0	3
5	<u>COS-509</u>	Computer Aided Structural Engineering Lab-4	0	0	2	2
		Programme Specific Elective (PSE) Courses				
6	<u>COS-533</u>	Structural Health Monitoring	3	0	0	3
7	<u>COS-534</u>	Structural Health Monitoring Lab	0	0	1	1
	OR					
8	COS-535	Stability of Structures	3	0	0	3
9	COS-536	Stability of Structures Lab	0	0	1	1
	•	Research Specific Elective (RSE) Courses				
10	REC-563	Statistics and Data Analysis for Engineering Research	2	0	0	2
11	REC-564	Statistics and Data Analysis Lab	0	0	2	2
		OR		•	•	
12	<u>REC-565</u>	Statistical Techniques for Engineering Research	2	0	0	2
13	REC-566	Probability and Statistical analysis lab	0	0	2	2
		TOTAL	14	0	6	20

MASTER OF ENGINEERING (COMPUTER AIDED STRUCTURAL ENGINEERING) RC 2024-25

ſ

	Semester III					
Sr. No.	Course Code	Title of the Course	L	т	Р	Credits
	I	Programme Specific Core (PSC) Courses				
1	COS-600	Advanced Design of Steel Structures	3	0	0	3
2	COS-601	Advanced Design of Steel Structures LAB	0	0	1	1
3	COS-602	Design of Substructures	3	0	0	3
4	COS-603	Design of Substructures LAB	0	0	1	1
		Programme Specific Elective (PSE) Courses				
5	COS-631	Design of High Rise Structures	3	0	0	3
6	COS-632	Design of High Rise Structures Lab	0	0	1	1
		OR			-	_
7	COS-633	Design of Earthquake resistant structures	3	0	0	3
8	COS-634	Design of Earthquake resistant structures Lab	0	0	1	1
	Research Specific Elective (RSE) Courses					
9	COS-661	Probabilistic Methods in Structural Engineering	2	0	0	2
10	COS-662	Probabilistic Methods in Structural Engineering Lab	0	0	2	2
	OR					
11	COS-663	Forensic Structural Engineering	2	0	0	2
12	COS-664	Forensic Structural Engineering Lab	0	0	2	2
		General Elective (GE) Courses			-	
13	GEC-681	Sustainability Principles & Practices	3	0	0	3
14	GEC-682	Sustainability Principals Lab	0	0	1	1
		OR			•	-
15	GEC-683	Project Management	3	0	0	3
16	GEC-684	Project Management Lab	0	0	1	1
		TOTAL	14	0	6	20
	1	Semester IV			1	1
Sr.	Course	Title of the Course	L	т	Р	Credits
No.	Code		-	•	•	cicuits
	[General Elective (GE) Courses	-			1
1	GEC-685	Financial Management	4	0	0	4
	Γ	OR				1
2	GEC-686	Entrepreneurship	4	0	0	4
		Program Specific Dissertation/Internship	-	_	_	
3	COS-698	Dissertation	0	0	0	16
		OR		-	-	
4	COS-699	Internship	0	0	0	16
		TOTAL	4	0	0	20

	THREE YEAR PROGRAMME STRUCTURE					
		Semester I				
Sr	Course	Title of the Course		т	D	Cradita
No.	Code		L		P	creatts
	Programme Specific Core (PSC) Courses					
1	<u>COS-500</u>	Computational Structural Mechanics	З	0	0	3
2	<u>COS-503</u>	Computer Aided Structural Engineering Lab-1	0	0	1	1
	Programme Specific Elective (PSE) Courses					
3	<u>COS-531</u>	Numerical Techniques in Structural Engineering	3	1	0	4
	OR					
4	<u>COS-532</u>	Structural Optimization	3	1	0	4
	Research Specific Elective (RSE) Courses					
5	REC-561	Engineering Research & Publications	3	1	0	4
	OR					
6	REC-562	Literature Review & Technical Writing for Engineers	3	1	0	4
	TOTAL 9 2 1 12					

Semester – I	
Programme Specific Core (PSC) Courses
Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-500
Title of the Course	: Computational Structural Mechanics
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25

Pre-requisites	Engineering Mathematics, Engineering Mechanics, Strength of Materials,			
for the course:	Structural Analysis 🖗 / 🔄 🥸 🖗			
Course Objectives:	 The course will enable the students to: 1. Understand the concept of Matrix methods and FEM 2. Apply stiffness matrix method and analyze 2-D structures 3. Analyze structural elements using FEM. 4. Design and analyze flowcharts, algorithms, and computer programs for the structural analysis of trusses, beams, grids, and frames, enhancing the capability to solve practical engineering problems using computational methods 			
Contents:		No. of Hours		
	Introduction to Matrix methods of structural Analysis: Degrees of Static and Kinematic indeterminacies, Concepts of Stiffness and Flexibility, Local and Global Coordinate System, Force Transformation matrix, Displacement transformation matrix	10		
UNIT 2	Matrix Analysis of indeterminate Trusses: Analysis of trusses with and without initial strains using Matrix Stiffness method. FE Analysis of Bars and trusses: Shape Functions for linear and higher order elements, FE formulation for bars and trusses. Computer Applications: Flowchart, Algorithm, Computer logic and concept of development of programs to analyze trusses.	10		
UNIT 3	 Matrix Analysis of Beams: Continuous beam analysis using Matrix Stiffness method. FE Analysis of Beams: Derivation of Shape Function for two nodded beam element, Hermitian Interpolation, Element Stiffness matrix, Consistent Nodal loads. Analysis of 2D beams using FEM. Computer Applications: Flowchart, Algorithm, Computer logic and concept of development of programs to analyze Continuous beams. 	10		
UNIT 4	 Matrix Analysis of Grids: Torsional stiffness of grid element and advantage of torsion release; Analysis of Grids by Matrix Stiffness method FE Analysis of Grids: Grid analysis using FEM Matrix Analysis of Frames: Frame analysis using Matrix Stiffness method. FE Analysis of Frames: Analysis of 2D Frames using FEM. 	15		

	Computer Applications: Flowchart, Algorithm, Computer logic	
	and concept of development of programs to analyze Frames.	
Pedagogy:	Constructive, Collaborative and inquiry based learning	
	 Chandrupatla, T. R. and Belegundu, A. D., Introduction to Finite Elements, Pearson, 2002. ISBN-13: 978-8120321069 Cook, R. D., Malkus, D. S. and Plesha, M. E., Concepts and Applications of Finite Element Analysis, John Wiley and Sons, 2007. ISBN-13: 978- 8126513369 	
References/	3. Rajasekaran, S. and Shankarsubramanian, G., Computational	
Readings:	 Structural Mechanics, PHI Learning, 2004. ISBN-13: 978-8120317345 Reddy, C. S., Basic Structural Analysis, Tata McGraw-Hill, 2010. ISBN- 13: 978-0070702769 Weaver, W. and Gere, J. M., Matrix Analysis of Framed Structures, CBS Publishers and Distributors Pvt. Ltd, 2004. ISBN-13: 978- 8123911519 	
Course Outcomes:	 After taking this course, student will be able: CO1. Understand the concept of Matrix methods and FEM CO2. Apply stiffness matrix method and analyze 2-D structures CO3. Analyse structural elements using FEM. CO4. Design and analyze flowcharts, algorithms, and computer programs for the structural analysis of trusses, beams, grids, and frames, enhancing the capability to solve practical engineering problems using computational methods. 	
(Back to Index)		

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-501
Title of the Course	: Theory of Deformable Bodies
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25

	(Anna)		
Pre-requisites	Engineering Mathematics, Engineering Mechanics, Strength of Materials		
for the course:			
Course Objectives:	 The course will enable the students to: Understand stress and strain concepts in 2-D and 3-D cases. Apply stress transformation principles to determine principal stresses and strains. Apply methods like Airy's stress function and finite difference equations to elasticity problems. Analyze torsion effects on bars using Prandtl's analogy and energy methods 		
Content:	C C C C C C C C C C C C C C C C C C C	No. of Hours	
UNIT 1	Introduction: Definition of stress and strain at a point, components of stress and strain at a point of Cartesian and polar co-ordinates, Constitutive relations, equilibrium equations, compatibility equations and boundary conditions in 2-D and 3-D cases.	10	
UNIT 2	Transformation of stress and strain at a point: Principal stresses and principal strains, invariants of stress and strain, hydrostatic and deviatory stress, spherical and deviatory strains, maximum shear strain10		
UNIT 3	Plane stress and plane strain: Airy's stress function approach to 2 dimensional problems of elasticity, simple problems of bending beams. Solution of axi-symmetric problems, stress concentration due to presence of circular hole in plates.10		
UNIT 4 Elementary problems on elasticity in 3 dimensions: Stretching of a prismatical bar by its own weight, twist of circular shafts, torsion of non-circular sections, membrane analogy, propagation of waves in solid media, application of finite difference equations in elasticity. Torsion of various shaped bars: Prandtl's membrane analogy- energy method- Torsion of rolled Profiles- Stress concentration at re-entrant corners.		15	
Pedagogy:	Constructive, Collaborative and inquiry-based learning		
References/ Readings:	 Lu, Xi, Theory of Elasticity, John Wiley & Sons, 2000. ISBN-13: 978- 9056992422 Sadhu Singh, Theory of Elasticity, Khanna Publishers, 1978. ISBN-13: 978-8174090607 Sadhu Singh, Applied Stress, Applysis, Khanna Publishers, 1979. ISBN 		
	13: 978-8174090768		

	 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, 2010. ISBN-13: 978-0070701229 Verma, P. D. S., Theory of Elasticity, Vikas Publishing Pvt. Ltd., 1997. ISBN-13: 978-8125903697
Course Outcomes	 After taking this course, student will be able to CO1. Apply elastic analysis to study mechanics of deformable bodies CO2. Demonstrate the application of plane stress and plane strain in a given situation CO3. Formulate and solve planar problems using Airy stress function for two dimensional problems. CO4. Solve specific three-dimensional problems like torsion, bending of non-circular prismatic bar, membrane analogy and simple plate bending

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-502
Title of the Course	: Python Programming
Number of Credits	: 04 (4L)
Effective from AY	: 2024-25

Pre-requisites	Basic Computer Programming		
for the course:			
	The course will enable the students to:		
	1. Demonstrate the concepts of control structures in Python.		
Course	ourse 2. Implement Python programs using functions and strings.		
Objectives:	3. Implement methods to create and manipulate lists, tuple		
	dictionaries.		
	4. Apply the concepts of file handling and using packages.		
		No. of	
Content:	UNIVER	Hours	
	Introduction to Python: Python variables, Python basic		
	Operators, Understanding python blocks. Python Data Types,		
AA	Declaring and using Numeric data types: int, float etc.	2	
FUNIVERS	Python Program Flow Control Conditional blocks: if. else and	REAL	
UNIT 1	else if. Simple for loops in python. For loop using ranges, string.	15	
6 282	list and dictionaries. Use of while loops in python, Loop	210	
	manipulation using pass continue break and else Programming		
	using Python conditional and loon blocks	GL2	
Call Party St	Python Complex data types: Using string data type and string	12 P	
Faufaur	operations. Defining list and list slicing. Use of Tuple data type	and a	
Constitution in Div	String List and Dictionary Manipulations Building blocks of		
	sythen programs string manipulation mothods list	15	
	manipulation Dictionany manipulation Drogramming using	15	
	string list and dictionary in built functions. Bythen Europian		
	Organizing python codes using functions. Fython Functions,		
	Diganizing python codes using functions.		
	Python File Operations: Reading mes, which gives in python,		
	Understanding read functions, read(), readine(), readines().		
	Manipulating file painter using cook Programming using file		
UNIT 3	Manipulating the pointer using seek Programming, using the	15	
	operations. Database Programming: Connecting to a database,		
	Creating Tables, INSERT, UPDATE, DELETE and READ operations,		
	Iransaction Control, Disconnecting from a database, Exception		
	Handling in Databases.		
	Python packages: Simple programs using the built-in functions		
UNIT 4	of packages matplotlib, numpy, pandas etc. GUI Programming:	15	
	Tkinter introduction, Tkinter and Python Programming, Tk		
	Widgets, Tkinter examples. Python programming with IDE.		
Pedagogy:	Constructive, Collaborative and inquiry based learning		
References/	1. Chun, W. J., Core Python Applications Programming,	Pearson	
Readings:	Education. ISBN-13: 978-0134288768		

	2. Dierbach, Charles, Introduction to Computer Science Using Python,			
	WIIEY. ISBN-13: 978-1119456325			
	3. Downey, A. et al., How to Think Like a Computer Scientist: Learning			
	with Python, John Wiley. ISBN-13: 978-1118290279			
	4. Jeeva Jose & Sojan Lal, P., Introduction to Computing and Problem			
	Solving with Python, Khanna Publishers, New Delhi. ISBN-13: 978-			
	8174093175			
	5. Lutz, Mark, Learning Python, O'Reilly Media. ISBN-13: 978-			
	1492050628			
	After taking this course, student will be able to			
	CO1. Demonstrate the concepts of control structures in Python.			
Course	CO2. Implement Python programs using functions and strings.			
Outcomes	CO3. Implement methods to create and manipulate lists, tuples and			
	dictionaries.			
	CO4. Apply the concepts of file handling and using packages.			

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-503
Title of the Course	: Computer Aided Structural Engineering Lab - I
Number of Credits	: 01
Effective from AY	: 2024-25

	CINE O
Pre-requisites	Structural Analysis, Finite Element Analysis and Basic Programming
for the course:	Small
Course Objectives:	 The course will enable the students to: Understand the principles of modelling and analysing trusses, beams, and frames. Apply programming techniques to create analysis tools for trusses, beams, and frames using the direct stiffness method. Apply stress analysis techniques, including Mohr's circle, for evaluating 2-D stress states. Analyze advanced structural behaviors, including moving loads, geometric nonlinearity, buckling, and eigenvalue problems, using industry-standard software
Content:	No. of Hours
	 List of Experiments: (Any 8 Experiments should be performed) Modelling and analysis of Truss. Modelling and analysis of Beam. Modelling and analysis of Frame. Program Development for Analysis of truss, beams and frames by direct stiffness method. Program development for 2-D stress analysis Program development for 2-D stress analysis using Mohr's circle Stress analysis of Slabs. Moving load Analysis Geometric Nonlinear analysis. Buckling Analysis Eigen value Analysis (Any Industry standard software can be used for analysis)
Pedagogy:	Inquiry based learning, constructive planning of experiments, collaborative approach in performing experiments and field visits.
References/ Readings:	 Hibbeler R.C., "Structural Analysis", Pearson, 2017, ISBN-13: 978- 0134610672 Kassimali A., "Matrix Analysis of Structures", Cengage Learning, 2011, ISBN-13: 978-1111426200. Kim N, Sankar B.V., Kumar A.V. "Introduction to Finite Element Analysis and Design", Wiley, 2018, ISBN-13: 978-1119078722
Course Outcomes	After taking this course, student will be able to CO1 Understand the principles of modelling and analysing trusses, beams, and frames.

CO2	Apply programming techniques to create analysis tools for
	trusses, beams, and frames using the direct stiffness method.
CO3	Apply stress analysis techniques, including Mohr's circle, for
	evaluating 2-D stress states.
CO4	Analyze advanced structural behaviors, including moving loads,
	geometric nonlinearity, buckling, and eigenvalue problems, using
	industry-standard software.

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-504
Title of the Course	: Computer Aided Structural Engineering Lab - 2
Number of Credits	: 01
Effective from AY	: 2024-25

.		
Pre-requisites	Basic Computer Programming, Fundamentals of Python Programm	ing
for the course:		
	The course will enable the students to:	
	1. Write algorithms and programs to solve Engineering problems.	
	2. Implement a variety of list operations, demonstrating the al	bility to
	manipulate and manage data using Python's list data st	ructure
Course	effectively.	
Objectives:	3. Implement a recursive approach to calculate the factoria	al of a
Objectives.	number, showcasing an understanding of recursion and its p	ractical
	applications.	
	4. Implement built-in functions from the matplotlib package f	or data
	visualization, demonstrating the ability to create and ir	nterpret
(A-A)	graphical representations of data.	
Contont		No. of
content:		Hours
9 600	Part A (Any three experiments):	019
h a A	1. Implementation of factorial of a given number 👘 📂 🧧	a/6
	2. Implementation of basic calculator as a menu driven program	AL O
UNIT	3. Implementation of list and various operations on it	A 10
Tayfac	4. Program to implement string manipulation functions.	D
A shight a fur f	5. Program to find Factorial of a Number Using Recursion.	
	Part B (Any three experiments):	
	1. Implementation of dictionary and basic operations in Python	
	2. Implementation of functions in Python	10
	3. Implementation of file I/O in Python	10
	4. Implementation of basic database operations	
	5. Exception handling in database.	
	Part C (Any one experiments):	
	1. Implementation of built- in functions from matplotlib	-
UNIT 3	package.	5
	2. Implementation of arrays using numpy package	
	Part D (Any two experiments):	
	1. Structural engineering application of Interpolation	
UNIT 4	techniques	5
	2. Structural engineering application of numerical integration	
	3. Structural engineering applications of curve fitting and errors	
	Inquiry based learning, constructive planning of exper	iments.
Pedagogy:	collaborative approach in performing experiments.	/
References/	1. Kiusalaas J., "Numerical Methods in Engineering with	Python
Readings:	3",Cambridge University Press,2013, ISBN-13: 978-1107033856	5

	2. Kong Q, Siauw T., Bayen A., "Python Programming and Numerical
	Methods: A Guide for Engineers and Scientists, Academic Press, 2020,
	ISBN-13: 978-0128195499
	3. Lora V. and Spanou K. "Python for Civil and Structural Engineers",
	Independent publisher, 2019, ISBN-13: 978-1077250939
	After taking this course, student will be able to
	CO1 Write algorithms and programs to solve Engineering problems.
	CO2 Implement a variety of list operations, demonstrating the ability
	to manipulate and manage data using Python's list data structure
Course	effectively.
Outcomes	CO3 Implement a recursive approach to calculate the factorial of a
	number, showcasing an understanding of recursion and its
	practical applications.
	CO4 Implement built-in functions from the matplotlib package for
	data visualization, demonstrating the ability to create and
	interpret graphical representations of data.

Programme Specific Elective (PSE) Courses

Name of the Programme	: Master Of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-531
Title of the Course	: Numerical Techniques in Structural Engineering
Number of Credits	: 04 (3L + 1T)
Effective from AY	: 2024-25

(Pinut)			
Pre-requisites	Engineering Mathematics		
for the course:	Zmark		
Course Objectives:	 The course will enable the students to: Solve first order initial value problems of Ordinary Difference Equations using appropriate Numerical methods. Understand the implementation of numerical technique polynomial interpolation and numerical integration. Apply numerical techniques to Solve an algebraic and transce equation and system of equations to the desired accuracy. Apply numerical techniques to solve real life structural eng problems. 	ferential ues for endental ineering	
Content:		No. of Hours	
UNIT 1	Solution of linear system of equations: Gaussian Elimination Method, Cholesky's factorisation, Crout's Reduction, Matrix inversion method, solution of Eigen value Problems, Gauss Jacobi Iteration, Gauss Seidel Solution of Nonlinear Equations: Newton Raphson's Method, Regula-Falsi Method.	15	
UNIT 2	Solution of ordinary Differential equations: Euler 's Method, Modified Euler's Method, Fourth order Runge – Kutta method, Taylor series Method. Numerical Integration: Trapezoidal and Simpson's Rule, Weddle's Rule, Gauss Quadrature technique	15	
UNIT 3	Finite Difference Method: Expression of derivatives by finite differences, Finite Difference Method, Boundary value problems of exact differential equations limited to second order only, PDE's-Parabolic-explicit. Hyperbolic equations, Elliptic equations. statically determinate and Indeterminate Problems, Buckling of Columns, Vibration of beams, bending of laterally loaded thin plates.	15	
UNIT 4	 Interpolation and Extrapolation: Newton's Interpolation-forward and backward, Lagrange's Interpolation, Hermite Interpolation, Spline Interpolation- Cubic, Inverse Interpolation, Extrapolation, Interpolation functions for axially loaded bar elements. Curve Fitting and Errors: Curve fitting (Interpolation, function that fits given values - approximate and exact, find function where reaches min/max or a specific value, linear regression, higher order polynomial, Gaussian, quantifying errors in curve 	15	

	fitting). Structural Engineering Applications.	
Pedagogy:	Constructive, Collaborative and inquiry based learning	
References/ Readings:	 Chapra, S. C., & Canale, R. P., Numerical Methods for En McGraw-Hill. ISBN-13: 978-1260464381 Jain, K. K., Iyengar, S. R. K., & Jain, R. K., Numerical Methods: P and Solutions, Wiley India Pvt. Ltd. ISBN-13: 978-8126531270 Hamming, R. W., Numerical Methods for Scientists and En McGraw-Hill. 2012, ISBN-13: 978- 0486134826 Mathews, J. H., & Fink, K. D., Numerical Methods Using N Pearson Education. ISBN-13: 978-0134694703 Scarborough, J. B., Numerical Mathematical Analysis, Oxfore Publishing Co. Pvt. Ltd. ISBN-13: 978-0195684356 	ngineers, roblems ngineers, MATLAB, d & IBH
Course Outcomes	 After taking this course, student will be able to CO 1. Solve first order initial value problems of Ordinary Difference Equations using appropriate Numerical methods. CO 2. Understand the implementation of numerical techniq polynomial interpolation and numerical integration. CO 3. Apply numerical techniques to Solve an algebra transcendental equation and system of equations to the accuracy. CO 4. Apply numerical techniques to solve real life structural eng problems. 	ferential ues for ic and desired ineering
The second secon	(Back	to Index)

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-532
Title of the Course	: Structural Optimization
Number of Credits	: 04 (3L +1T)
Effective from AY	: 2024-25

Pre-requisites	Engineering Mathematics, Engineering Mechanics, Structural Analy	/sis,
for the course:	Design of concrete structures	
Course Objectives:	 The course will enable the students to: 1. Understand the fundamentals of optimization, including the formulation of structural optimization problems and their applications in engineering. 2. Apply classical optimization techniques, including single and multivariable optimization, to solve unconstrained and constrained engineering problems using various algorithms and methods. 3. Apply linear programming methods, such as the simplex algorithm and duality concepts, to optimize linear systems in structural engineering. 4. Analyze non-linear and constrained optimization techniques, including direct search methods, penalty function techniques, and the cutting place method. 	
Content:		No. of Hours
UNIT 1	 Introduction: Introduction to optimization, engineering applications of optimization, formulation of structural optimization problems as programming problems. Optimization techniques: Classical optimization techniques, single variable optimization, multivariable optimization with no constraints, unconstrained minimization techniques and algorithms constrained optimized solutions by penalty function techniques, Lagrange multipliers techniques and feasibility techniques. 	15
UNIT 2	Linear programming: Linear programming, standard form of linear programming, geometry of linear programming problems, solution of system of linear simultaneous equations, pivotal production of general systems of equations, simplex algorithms, revised simplex methods, duality in linear programming.	15
UNIT 3	Non- linear programming: Non- linear programming, one dimensional minimization methods, elimination methods, Fibonacci method, golden section method, interpolation methods, quadratic and cubic methods, unconstrained optimization methods, direct search methods, descent methods	15
UNIT 4	Constrained optimization techniques: Direct and complex methods, cutting plane method, exterior penalty function methods for structural engineering problems, formulation and solution of structural optimization problems by different techniques.	15

Pedagogy:	Constructive, Collaborative and inquiry based learning
References/ Readings:	 Bhavikatti, S. S., Structural Optimization Using Sequential Linear Programming, Vikas Publishing House, 2003. ISBN-13: 978- 8125911814
	 Bronson, R., Operations Research, Schaum's Outline Series, 1997. ISBN-13: 978-0070080201 Krisch, Uri, Optimum Structural Design, McGraw-Hill, 2012. ISBN-13: 978-3642848452 Rao, S. S., Optimization: Theory and Practice, Wiley Eastern Ltd., 2000. ISBN 12: 978-9122411492
	 Spunt, Optimum Structural Design, Prentice Hall, 2007. ISBN-13: 978- 0136382706
	 After taking this course, student will be able to CO 1. Understand the fundamentals of optimization, including the formulation of structural optimization problems and their applications in engineering. CO 2. Apply classical optimization techniques, including single and multivariable optimization, to solve unconstrained and constrained
Course	engineering problems using various algorithms and methods.
Outcomes	CO 3. Apply linear programming methods, such as the simplex algorithm and duality concepts, to optimize linear systems in structural engineering.
	CO 4. Analyze non-linear and constrained optimization techniques, including direct search methods, penalty function techniques, and the cutting plane method, for solving complex structural optimization problems.
Constant and	Contraction of the second seco

Research Specific Elective	(RSE) Courses
Name of the Programme	: Master of Engineering (Artificial Intelligence and Data Science)
Course code	: REC-561
Title of the course	: Engineering Research & Publication
Number of credits	: 4(3L+1T)
Effective from AY	: 2024-25

Pre-requisites	Knowledge of research requirements in real life	
for the course:		
Course Objectives:	 Understand the importance of literature review, defining the objectives. Explain qualitative and quantitative methods of data analyses importance. Classify research publications, select appropriate journals b research areas. Practice ethics in publication and academic integrity 	research s and its ased on
Content:	OF UNIVERSION	No of Hours
Unit -1	Overview of scientific research in engineering , foundational and fundamental concepts like types of research and considerations for research in specific domains, motivation to do research, critical thinking, assumptions and hypotheses, basic and applied research, importance of formulation of broad research objectives	11 + 4T
Unit -2	Purpose and Methodology of Literature Search and Review of the scientific and engineering publications. Sources such as scholarly databases, public domain, open access, current literature, review articles, critical review and gap analysis, defining research objectives	11 + 4T
Unit -3	Quantitative and qualitative Data – importance of data in research, types of data, data collection techniques, Quantitative methods for analysis of data – statistical tools, mathematical modeling, simulation, experimental data, optimization methods; Qualitative data collection, preparing questioners, rating scale, conducting survey, validation of models.	12 + 4T
Unit- 4	Preparation of Publications- Elements of research publications, types of publications, writing for journal publications, basic requirements for publication, selection of journals, journal quality indicators, peer review, reply to comments and responses, publication ethics, references, citations, authorship, plagiarism, academic integrity	11 + 3T
Pedagogy:	Inquiry based learning, Integrative, Reflective Learning, Cons learning and Collaborative learning	structive
References/ Readings:	 Herman Tang, 'Engineering Research-Design, Method Publications', John Wiley and Sons, 2021, ISBN:978111962448 Michael Jay Katz, 'From Research to Manuscript', Springer Publications' 	ds and 6. plication,

	2009, ISBN:9781402094668.
	3. Rob Dekkers, Lindsey Casey, Peter Langhorne, 'Making Literature
	Review Work', Springer Publications, 2022, ISBN:9783030900243
	4. Meikang Qiu, Han Qiu, Yi Zeng, 'Research & Technical Writing for
	Science and Engineering', Taylor & Francis Publications, 2022,
	ISBN:9781003139058.
Course Outcomes:	CO 1. Understand the importance of literature review, defining the
	research objectives.
	CO 2. Explain qualitative and quantitative methods of data analyses and
	its importance.
	CO 3. Classify research publications, select appropriate journals based on
	research areas.
	CO 4. Practice ethics in publication and academic integrity
Comment Party Comment	

Name of the Prog	ramme : Master of Engineering (Artificial Intelligence and Da	ta Science)
Course code	: REC-562	
Title of the course	e : Literature Review & Technical Writing for Engineers	5
Number of credit	s : 4(3L + 1T)	
Effective from AY	: 2024-25	
Pre-requisites	Basics of Technical writing skills.	
for the Course:	ANNO	
Course Objectives:	 The course will enable the students to Understand the importance of literature review and writing paper. Explain the method to be followed to write a review paper. Classify data for qualitative and quantitative analysis Demonstrate technical writing for conference. 	a review
Content:	Tidestope = Daily	No of Hours
Unit -1	Overview on Literature Review , difference between objectives of literature review and research objectives; types of literature review, qualitative and quantitative reviews, search strategies, primary and secondary sources, database search strategies, field search, root search, complimentary search, meta-analysis	12 + 4T
Unit -2	Database management of literature reviews , bibliometric analysis, importance of writing a review paper, reply to comments and responses, publication ethics, references, citations, authorship, plagiarism, academic integrity; public domain, open access, current literature.	11 + 4T
Unit -3	Technical writing on a specific research topic , structure of the paper, abstract, introduction, experimental, simulation, analysis, discussion, inferences, title, acknowledgment, referencing, presentation of tables, figures, graphs, equations; comparison between technical writing for conference papers and journal paper	11 + 4T
Unit- 4	Importance of data in research , types of data, data collection techniques, Quantitative methods for analysis of data – statistical tools, mathematical modeling, simulation, experimental data, optimization methods; Qualitative data collection, preparing questioners, rating scale, conducting survey, validation of models.	11 + 3T
Pedagogy:	Inquiry based learning, Integrative, Reflective Learning, Constructive learning and Collaborative learning	
References/ Readings:	 Rob Dekkers, Lindsey Casey, Peter Langhorne, 'Making L Review Work – Multidisciplinary Guide to Systematic App Springer Publications, 2022, ISBN:9783030900243. Michael Jay Katz, 'From Research to Manuscript', Publication, 2009, ISBN:9781402094668. Herman Tang, 'Engineering Research-Design, Methor Publications', John Wiley and Sons, 2021, ISBN:97811196244 Meikang Qiu, Han Qiu, Yi Zeng, 'Research & Technical W 	iterature roaches', Springer ods and 86. riting for

	Science and Engineering', Taylor & Francis Publications, 2022,	
	ISBN:9781003139058.	
	After taking this course, student will be able to:	
	CO 1. Understand the importance of literature review and writing a	
Course	review paper.	
Outcomes:	CO 2. Explain the method to be followed to write a review paper.	
	CO 3. Classify data for qualitative and quantitative analysis	
	CO 4. Demonstrate technical writing for conference.	

Semester – II	
Programme Specific Core	(PSC) Courses
Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-505
Title of the Course	: Advanced Design of Reinforced Concrete and Prestressed Structures
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25
	129 June 200

Pre-requisites for the course:	Structural Analysis, Design of Concrete Structures	
Course Objectives:	 The course will enable the students to: Understand the direct design method for flat slabs, including a distribution and shear checks. Apply the equivalent frame and direct design methods to ana slabs, including reinforcement detailing. Apply the limit state method to design prestressed concrete s including rectangular and flange sections, and calculate p tension and shear strength. Analyse the design of grid floors, storage structures, and ch considering self-weight, wind, temperature, and stress combined. 	moment alyze flat sections, principal nimneys, nations.
Content:		Hours
	Flat Slabs : Direct design method: Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns. Shear in Flat Slabs-Check for one-way and two-way shears. Introduction to Equivalent frame method. Limitations of Direct design method, Distribution of moments in column strips and middle strip sketch showing reinforcement details.	12
UNIT 2	Grid Floor: Concept, Design and detailing of grid floors.	11
UNIT 3	Design of Prestressed Concrete Sections using Limit State Method: General philosophy of design, permissible stresses in concrete and steel, suitability of section, safe cable zone, design of rectangular and Flange sections using limit state method. Calculation of principal tension under working load, permissible principal tension, shear strength calculation under limit state of collapse for both sections cracked and uncracked in flexure. Design of end block. Post tensioned slabs	12
UNIT 4	Storage Structures: Design of Bunkers and Silos. Chimneys : Introduction, Design factors, Stresses due to self- weight, wind and temperature. Combinations of stresses.	10
Pedagogy:	Constructive, Collaborative and inquiry based learning, Field Visits	
References/ Readings:	 Punmia, B. C., Jain, Ashok Kumar, & Jain, Arun Kumar Structures, Laxmi Publications, New Delhi, 2015, ISBN-1 8131809426 Raju Krishna Advanced Reinforced Cement Concrete Deci 	, R.C.C. 3: 978-
	2. Naju, Khshina, Auvanceu Kennorceu Centent Concrete Desi	BII, CDS

	Publishers & Distributors, New Delhi, 2016, ISBN-13: 978-8123929606		
	3. Raju, Krishnam, Structural Design and Drawing (RCC and Steel),		
	University Press, New Delhi, 2005, ISBN-13: 978-8173714894		
	4. Raju, N. Krishna, Prestressed Concrete, McGraw-Hill Education Pvt.		
	Ltd., 2012, ISBN-13: 978-1259050817		
	5. Varghese, P., Advanced Reinforced Cement Concrete Design, PHI		
	Learning Pvt. Ltd., New Delhi, 2010, ISBN-13: 978-8120327870		
	After taking this course, students will be able to		
	CO 1. Understand the direct design method for flat slabs, including		
	moment distribution and shear checks.		
	CO 2. Apply the equivalent frame method and direct design method		
Course	to analyze flat slabs, including reinforcement detailing.		
Outcomes	CO 3. Apply the limit state method to design prestressed concrete		
outcomes	sections, including rectangular and flange sections, and		
	calculate principal tension and shear strength.		
	CO 4. Analyze the design of grid floors, storage structures, and		
	chimneys, considering factors such as self-weight, wind,		
	temperature, and stress combinations.		

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-506
Title of the Course	: Computer Aided Structural Engineering Lab 3
Number of Credits	: 01 (1P)
Effective from AY	: 2024-25

	Ching States	
Pre-requisites	Structural Analysis, Finite Element Analysis and Basic Programming	5
for the course:	Sonder	
Course Objectives:	 The course will enable the students to: 1. Understand and apply IS/ACI codes for high-grade an compacting concrete mix designs and study their flow character 2. Analyse and design flat slabs, grid floors, and prestressed commembers using software and spreadsheets. 3. Encourage practical learning through case studies and 	d self- ristics. oncrete d field
	 observation 4. Compile findings, analysis, and insights from design, case stud field visits into comprehensive reports demonstrating unders and applying learned concepts. 	ies, and tanding
Content:	Ston Alt I	No. of Hours
	List of Experiments (Minimum 8):	AR
	1. Design mix for high-grade concrete based on IS and ACI codes.	
	 Design mix for self-compacting concrete based on IS and ACI codes. 	
Company a Day	 Flow Characteristics of Self-Compacting Concrete. Analysis of flat slab systems using industry-standard software 	
	 and designing using spreadsheets. 5. Analysis of grid floor systems using industry-standard software and designing using spreadsheets. 	30
	 Analysis of prestressed slab using industry-standard software and designing using spreadsheets 	
	 Detailed Case study report (unique) on the design and execution of ongoing RCC structure projects. 	
	8. Field visit on RCC construction site and Report submission (Any Industry standard software can be used for analysis)	
	Inquiry-based learning, constructive planning of exper	iments.
Pedagogy:	collaborative approach in performing experiments and field visits.	
	1. Guidelines for Concrete Mix Design Proportioning [CED 2: Cem	ent and
	Concrete], IS 10262 (2009).	
	2. Punmia, B. C., Jain, Ashok Kumar, & Jain, Arun Kumar,	R.C.C.
References/	Structures, Laxmi Publications, New Delhi, 2015, ISBN-13	3: 978-
Readings:	8131809426.	
	Publishers & Distributors, New Delhi, 2016, ISBN-13 8123929606.	: 978-

	4. Raju, Krishna, Structural Design and Drawing (RCC and Steel),	
	University Press, New Delhi, 2005, ISBN-13: 978-8173714894.	
	5. Raju, N. Krishna, Prestressed Concrete, McGraw-Hill Education Pvt.	
	Ltd., 2012, ISBN-13: 978-1259050817.	
	6. Varghese, P., Advanced Reinforced Cement Concrete Design, PHI	
	Learning Pvt. Ltd., New Delhi, 2010, ISBN-13: 978-8120327870.	
	After taking this course, student will be able to	
	CO 1. Apply IS and ACI codes for high-grade and self-compacting	
	concrete mix designs and study its flow characteristics.	
	CO 2. Analyse and design flat slabs, grid floors, prestressed concrete	
	members using software, spreadsheets.	
Course	CO 3. Apply practical learning through case studies and field	
Outcomes	observation	
	CO 4. Analyse and compile findings, insights from design, case	
	studies, and field visits into comprehensive reports that	
	demonstrate understanding and application of learned	
	concepts.	

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-507
Title of the Course	: Theory of Thin Plates & Shells
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25

	A A	
Pre-requisites	Engineering Mathematics, Strength of materials, Theory of Deformable	
for the course:	bodies	
Course Objectives:	 The course will enable the students to: Understand plate theory, including small deflection theory for rectangular plates and solutions for various boundary conditions. Apply energy methods to analyze rectangular and circular plates with clamped edges under symmetric loadings. Apply curved surface theories to analyze different shell types, including spherical, cylindrical, and hyperbolic paraboloids. Analyze axially symmetrical bending and finite element formulations for plates and shells. 	
Content:		No. of Hours
UNIT 1	Introduction to plate theory: Introduction to plate theory, small deflection of laterally loaded thin rectangular plates for pure bending, Navier's and Levy's solution for various lateral loading and boundary conditions, Numerical examples.	12
UNIT 2	Energy methods for plates: Energy methods for rectangular and circular plates with clamped edges subjected to symmetric loadings.	11
UNIT 3	Introduction to curved surfaces: Introduction to curved surfaces and classification of shells, membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids.	
UNIT 4	Axially symmetrical bending: Axially symmetrical bending of shells revolution, closed cylindrical shells, water tanks, spherical shells and Geckeler's approximation, bending theory of doubly curved shallow shells10Finite Element Approach: Finite element formulation for Plates and shells.10	
Pedagogy:	Constructive, Collaborative and inquiry based learning	
References/ Readings:	 Chatterjee, B. K., Theory and Design of Concrete Shell Roofs, Chapman and Hall, 1978, ISBN-13: 978-0412316609. Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, 2003, ISBN-13: 9780203502808. Szilard, R., Theory and Analysis of Plates: Classical and Numerical Methods, Prentice Hall, 1974, ISBN-13: 978-0139134265. Timoshenko, S. and Woinowsky-Kreiger, Theory of Plates and Shells, McGraw-Hill Book Company, New York, 1959, ISBN-13: 9780070647794. 	

	5. Ugural, A. C., Stresses in Plates and Shells, McGraw-Hill Book	
	Company, 1999, ISBN-13: 9780070657694.	
	After taking this course, student will be able to	
	CO 1. Analyse plates using the concept of Navier's and Levy's	
	solution for various boundary conditions	
Course	CO 2. Apply energy methods for plates with various boundary	
Outcomes	conditions	
	CO 3. Apply membrane theory for shells of different shapes	
	CO 4. Analyse singly curved shells, doubly curved shells and cylindrical	
	shells 🦞 🦾 🖓	

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-508
Title of the Course	: Computational Structural Dynamics
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25

Pre-requisites	Mathematics, Numerical Techniques, Engineering Mechanics, Struc	tural
for the course:		
Course Objectives:	 The course will enable the students to: Understand the fundamentals of single degree of freedom s including free and damped vibrations, and the associated eq of motion. Apply methods to analyse the response of single degree of f systems to harmonic and general dynamic loading, in evaluation of damping and numerical methods. Apply concepts to multiple degrees of freedom systems, in free and forced vibration analysis, natural frequencies, and shapes. Analyse dynamic behaviour in continuous systems and including the formulation of stiffness and mass matrices a application of computer programs for dynamic response analysis 	ystems, juations reedom ncluding d mode beams, and the sis
Content:		No. of Hours
UNIT 1	Single Degree of Freedom System subjected to free vibration: Degrees of freedom, undamped system, springs in parallel, in series. Newton's laws of motion, free body diagrams. D'Alembert's principle, solution of the differential equation of motion, frequency and period, amplitude of motion. Damped Single degree of freedom system – viscous damping, equation of motion, critically damped system, over damped system, under damped system, and logarithmic decrement.	12
UNIT 2	Response of single degree of freedom system to harmonic loading: Undamped harmonic excitation, damped harmonic excitation, evaluation of damping at resonance, bandwidth method (Half power) to evaluate damping, response to support motion, force transmitted to the foundation, seismic instruments. Response to General Dynamic Loading: Impulsive loading and Duhamel's integral, numerical evaluation of Duhamel's integral, un-damped system, numerical evaluation of Duhamel's integral, damped system. Numerical Evaluation of dynamic response using Newmark's methods.	11
UNIT 3	Multiple degrees of Freedom system: Dynamics of Multi-degree freedom systems: Mathematical models of multi-degree-of- freedom systems, Shear building concept, free and forced vibration of undamped and damped multi-degree-of- freedom	12

	systems – Natural frequencies and mo	de shapes – Orthogonality
	of modes.	
	Dynamics of continuous systems:	Dynamics of Continuous
	systems: Flexural vibration of bea	ams with different end
	conditions	
	Basics of Vibration Control: Base Isola	tion, Tuned Mass Damper
	Dynamic Analysis of Beams: Stiffn	ess matrix, mass matrix
	(iumped and consistent); equations of	motion for the discretized
	Computer Applications: Flowsbart	Igorithms Computer logic 10
UNIT 4	for development of computer Progra	agontains computer logic 10
	and multiple degree of freedom syste	m subjected to forced and
	free vibration	in subjected to forced and
Pedagogy:	Constructive, Collaborative and inquiry	v based learning
	1. Chopra. A. K., Dynamics of Strue	ctures – Theory and Applications.
	Pearson Education, 2017, ISBN-13:	9788131713297.
	2. Clough, R. W. and Penzien, J., Dy	namics of Structures, McGraw-Hill,
	New York, 1975, ISBN-13: 9780070	113923.
Deferences/	3. Craig, R. R. and Kurdila, A. J., Fur	damentals of Structural Dynamics,
References/	John Wiley & Sons, 2011, ISBN-13:	9781118174449.
Neaulings.	4. Mukhopadhyay, M., Vibration, D	ynamics, and Structural Problems,
Smark	Oxford & IBH Publishing Co., 2008,	ISBN-13: 9788180520907.
9 Georges)	5. Paz, Mario, Structural Dynamics	: Theory and Computations, 2nd
D LE A	Edition, CBS Publishers and Distri	butors, New Delhi, 2012, ISBN-13:
	9781461504818.	
	After taking this course, student will be	e able to
Construction - Dr. D	COI. Understand the fundamenta	als of single degree of freedom
	systems, including free an	d damped vibrations, and the
	CO 2 Apply methods to analyze t	the response of single degree of
	freedom systems to harmor	nic and general dynamic loading
Course	including evaluation of dampi	ng and numerical methods.
Outcomes	CO 3. Apply concepts to multiple	e degrees of freedom systems.
	including free vibration analy	sis, natural frequencies, and mode
	shapes	
	CO 4. Analyze dynamic behavior in	continuous systems and beams,
	including the formulation of	stiffness and mass matrices and
	the application of computer	programs for dynamic response
	analysis	

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-509
Title of the Course	: Computer Aided Structural Engineering Lab 4
Number of Credits	: 2 P
Effective from AY	: 2024-25

Pedagogy:	Inquiry based learning, constructive planning of experiments, collaborative approach in performing experiments and field visits.	
	1. Chatterjee, B. K., Theory and Design of Concrete Shell Roofs, Chapman and Hall, 1978, ISBN-13: 978-0412316609.	
	2. Chopra, A. K., Dynamics of Structures – Theory and Applications, Pearson Education, 2017, ISBN-13: 9788131713297.	
	3. Clough, R. W. and Penzien, J., Dynamics of Structures, McGraw-Hill, New York, 1975, ISBN-13: 9780070113923.	
	4. Craig, R. R. and Kurdila, A. J., Fundamentals of Structural Dynamics, John Wiley & Sons. 2011. ISBN-13: 9781118174449.	
	5. Mukhopadhyay, M., Vibration, Dynamics, and Structural Problems, Oxford & IBH Publishing Co., 2008, ISBN-13: 9788180520907.	
References/ Readings:	6. Paz, Mario, Structural Dynamics: Theory and Computations, 2nd Edition, CBS Publishers and Distributors, New Delhi, 2012, ISBN-13: 9781461504818.	
	7. Reddy, J. N., Mechanics of Laminated Composite Plates and Shells:	
	8. Szilard, R., Theory and Analysis of Plates: Classical and Numerical	
	Methods, Prentice Hall, 1974, ISBN-13: 978-0139134265.	
ANVE	9. Timoshenko, S. and Woinowsky-Kreiger, W., Theory of Plates and Sholls McGraw Hill Book Company, New York 1959, ISBN 13:	
	9780070647794.	
10. Ugural, A. C., Stresses in Plates and Shells, McGrav Company, 1999, ISBN-13: 9780070657694.		
	After taking this course, student will be able to	
Taufaetre	CO 1. Understand the principles and methodologies for analyzing thin plates and shells, including the differences between thin shells, thick shells, and membranes.	
	CO 2. Apply program development techniques to perform free and	
Course	CO 3. Apply dynamic modeling and analysis methods to two-	
Outcomes	dimensional frame structures and develop Excel sheets for	
	numerical evaluation of SDOF systems.	
	CO 4. Analyze the dynamic behavior of three-dimensional building	
	structures using industry-standard methods, including modal	
	analysis, the equivalent static method, and the response	
	spectrum method. – 79	

<u>(Back to Index)</u>

Programme Specific Elective (PSE) Courses

Name of the Programme	: Master Of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-533
Title of the Course	: Structural Health Monitoring
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25

Pre-requisites	Material Science, Nondestructive testing methods	
for the course:	waterial science, Nondestructive testing methods	
Course Objectives:	 The course will enable the students to: Understand the principles of structural health monitoring including definitions, motivations, and non-destructive testin methods. Apply static field-testing techniques and response measureme to evaluate real-world scenarios Apply dynamic field-testing methods, such as vibration and tests, to evaluate structural performance. Analyse and evaluate data acquisition systems and remote mo methods, including communication technologies and compression techniques. 	(SHM), g (NDT) nt tools impact nitoring l data
Content:		No. of Hours
	Introduction - Definition of SHM - Motivation for structural health monitoring - Assessment by NDT equipment's. Static Testing - Static field testing- types of static tests- loading methods - Behavioural / Diagnostic tests - Proof tests - Static response measurement – strain gauges, LVDTs, dial gauges - case study.	12
UNIT 2	Dynamic field testing - Types of dynamic tests - Stress history data Dynamic load allowance tests - Ambient vibration tests - Forced Vibration Method - Dynamic response methods - Impact hammer testing - Shaker testing - Periodic and continuous monitoring.	11
UNIT 3	Data Acquisition - Static data acquisition systems - Dynamic data acquisition systems - Components of Data acquisition system - Hardware for Remote data acquisition systems.	12
UNIT 4	Remote Structural health monitoring - Remote Structural Health Monitoring - Importance and Advantages – Methodology - RF/PSTN/GSM/Satellite Communications - Networking of sensor - Data compression technique - Case Studies	10
Pedagogy:	Constructive, Collaborative and inquiry-based learning, Field Visits	
References/ Readings:	 Adams, D. E., Health Monitoring of Structural Materia Components: Methods with Applications, John Wiley and Son ISBN-13: 9780470511572. Daniel, B., Claus-Peter, F., & Güemes, A., Structural Monitoring, John Wiley and Sons, 2010, ISBN-13: 97804703944 Giurgiutiu, V., Structural Health Monitoring with Wafer 	als and s, 2010, Health 403. Active

	Sensors, Academic Press Inc., 2014, ISBN-13: 9780124201026.		
	4. Huston, D., Structural Sensing, Health Monitoring, and Performance		
	Evaluation, 2010, ISBN-13: 9781420012354.		
	5. Ou, J. P., Li, H., & Duan, Z. D., Structural Health Monitoring and		
	Intelligent Infrastructure Vol-1, Taylor and Francis Group, London,		
	U.K., 2005, ISBN-13: 978-0415396523.		
	After taking this course, student will be able to		
	CO 1. Diagnose the distress in the structure		
	CO 2. Apply knowledge of static and dynamic field-testing techniques		
	to assess structural performance and health.		
	CO 3. Effectively use static and dynamic data acquisition systems and		
Outcomos	understand their components for remote monitoring		
Outcomes	applications.		
	CO 4. Implement remote structural health monitoring solutions,		
	utilizing communication technologies, sensor networks, and		
	data compression techniques.		

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-534
Title of the Course	: Structural Health Monitoring Lab
Number of Credits	:1P
Effective from AY	: 2024-25

Pre-requisites for the course:	Concepts of Concrete Technology and Design of Concrete Structur	es.
Course Objectives:	 The course will enable the students to: Evaluate the strength, integrity and homogeneity of concret non-destructive testing methods. Evaluate durability by measuring different parameters like cre shrinkage to assess its impact on the performance of concrete. Assess the condition and performance of concrete using e resistance strain gauges Thermal Imaging Test Document findings from condition surveys, including reinfor details, concrete quality, durability factors, and any structura identified through testing, following CPWD guidelines. 	e using ep and lectrical cement l issues
Contents:	Stondall and	No. of Hours
	 List of Experiments (Minimum 8): 1. Conduct Condition Survey of a building and prepare detailed Visual Inspection Report as per CPWD guidelines. 2. To detect reinforcement details in concrete elements using Profometer. 3. Assess the quality of concrete with Rebound Hammer equipment. 4. Assess the quality of concrete with Ultrasonic Pulse Velocity equipment. 5. Carbonation Test on Concrete. 6. Rapid Chloride Permeability Test on Concrete. 7. Rapid Chloride Migration Test on Concrete. 8. Strain measurement – electrical resistance, strain gauges. 9. Short- and long-term durability tests and analysis using software 10. Shrinkage and Creep of concrete 11. Thermal imaging test. 	30
Pedagogy:	Inquiry based learning, constructive planning of exper collaborative approach in performing experiments and field visits.	iments,
References/ Readings:	 Adams, D. E., Health Monitoring of Structural Materia Components: Methods with Applications, John Wiley and Son ISBN-13: 9780470511572. Daniel, B., Claus-Peter, F., & Güemes, A., Structural Monitoring, John Wiley and Sons, 2010, ISBN-13: 97804703944 General Standard for Qualification and Certification o Destructive Testing Personnel [MTD 21: Non-Destructive [MTD 21: Non-Destructive [MTD 21: Non-Destructive [MTD 2	Ils and s, 2010, Health I03. f Non- ting], IS

	138	05 (2004).
	4. Giui	rgiutiu, V., Structural Health Monitoring with Wafer Active
	Sen	sors, Academic Press Inc., 2014, ISBN-13: 9780124201026.
	5. Han	dbook on Repair and Rehabilitation of RCC Buildings, CPWD
	(Cer	ntral Public Works Department), 2002.
	6. Hus	ton, D., Structural Sensing, Health Monitoring, and Performance
	Eva	uation, 2010, ISBN-13: 9781420012354.
	7. Met	hod of Non-Destructive Testing of Concrete, Part 1: Ultrasonic
	Puls	e Velocity [CED 2: Cement and Concrete], IS 13311-1 (1992).
	8. Met	hod of Tests for Strength of Concrete, BIS, New Delhi, India, IS
	516	:2006.
	9. Ou,	J. P., Li, H., & Duan, Z. D., Structural Health Monitoring and
	Inte	lligent Infrastructure Vol-1, Taylor and Francis Group, London,
	U.K.	, 2005, ISBN-13: 978-0415396523.
	After ta	king this course, student will be able to
	CO 1.	Evaluate the strength, integrity and homogeneity of concrete
		using non-destructive testing methods.
	CO 2.	Evaluate durability by measuring different parameters like
		creep, shrinkage to access its impact on the performance of
Course		concrete.
Outcomes	CO 3.	Access the condition and performance of concrete using
Smark		electrical resistance strain gauges Thermal Imaging Test
9 600	CO 4.	Compile and document findings from condition surveys,
B B B	1	including reinforcement details, concrete quality, durability
APRILA		factors, and any structural issues identified through testing,
Ma Day		following CPWD guidelines.
Constant a constant		(Back to Index)

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-535
Title of the Course	: Stability of Structures
Number of Credits	: 03 (3L)
Effective from AY	: 2024-25

	UNIVE		
Pre-requisites	Engineering Mathematics, Theory of deformable bodies, Theory of P	lates	
for the course	and shells, Finite Element Analysis		
Course Objectives:	 The course will enable the students to: Understand the differential equations and formulations for columns subjected to various lateral loads, including formulations for different column end conditions. Apply methods to calculate critical loads and analyze buckling in and continuous beams, including the energy approach and efficient columns end continuous beams. Apply the finite element approach to stability analysis, includ calculation of critical loads for discretized columns and pinframes. Analyse lateral buckling of beams and buckling of rectangular under various loading conditions, including uniaxial and biaxial loads. 	beam- Euler's frames fects of ing the jointed	
Content:		No. of Hours	
	Beam - Column: Differential equation, beam column subjected to lateral concentrated load, several concentrated loads, continuous lateral load, application of trigonometric series, Euler's formulation using fourth order differential equation for pinned-pinned, fixed-fixed, fixed-free and fixed-pinned column.	12	
UNIT 2	Buckling of frames and continuous beams: Elastic, energy method- approximate calculation of critical loads for cantilever, exact critical load for hinged-hinged column using energy approach, buckling of bar on elastic foundation, buckling of cantilever column under distributed loads, determination of critical loads by successive approximation, bars with varying cross section, effect of shear force on critical load.	11	
UNIT 3	 Stability analysis by finite element approach: Finite element formulation for buckling, Calculation of critical loads for a discretized (two elements) column (both ends built in), buckling of pin jointed frames (maximum of two active dof). Lateral buckling of beams: Differential equations, pure bending, cantilever beam with tip load, simply supported beam of I section subjected to central concentrated load. 	12	
UNIT 4	Buckling of rectangular plates: Buckling of simply supported rectangular plate- uniaxial load and biaxial load, buckling of uniformly compressed rectangular plate simply supported along two opposite sides perpendicular to the direction of compression and having edge condition along the other two sides.	10	

Pedagogy:	Constru	ctive, Collaborative and inquiry based learning
	1. Coo	k, R. D., et al., Concepts and Applications of Finite Element Analysis,
	Johr	n Wiley and Sons, New York, 1981, ISBN-13: 9780471030508.
	2. Jera	th, S., Structural Stability Theory and Practice: Buckling of Columns,
	Bea	ms, Plates, and Shells, John Wiley & Sons, 2020, ISBN-13:
Poforoncos/	978	1119694526.
Readings:	3. Sim	itse, G., et al., Fundamentals of Structural Stability, Hardcover,
Readings.	200	6, ISBN-13: 9780750678759.
	4. Tim	oshenko, S. P., and Gere, J. M., Theory of Elastic Stability, McGraw-
	Hill,	New Delhi, 2012, ISBN-13: 9780486134802.
	5. Zeig	ler, H., Principles of Structural Stability, Blaisdell Publications, 1977,
	ISBN	N-13: 978376430886.
	After ta	king this course, student will be able to
	CO 1.	Understand the differential equations and formulations for
		beam-columns subjected to various lateral loads, including
		Euler's formulations for different column end conditions.
	CO 2.	Apply methods to calculate critical loads and analyze buckling in
Course		frames and continuous beams, including the energy approach
Course		and effects of varying cross-sections.
Outcomes	CO 3.	Apply the finite element approach to stability analysis, including
	1	the calculation of critical loads for discretized columns and pin-
	P	jointed frames.
	CO 4.	Analyze lateral buckling of beams and buckling of rectangular
	A	plates under various loading conditions, including uniaxial and
SER	2	biaxial loads.
विश्वचि		(Back to Index)

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: COS-536
Title of the Course	: Stability of Structures Lab
Number of Credits	: 01 P
Effective from AY	: 2024-25

Pre-requisites	Engineering Mathematics, Theory of deformable bodies, Theory o	f Plates
for the course:	and shells, Finite Element Analysis, Basics of Programming	
Course Objectives:	 The course will enable the students to: Analyze the stability and buckling behavior of different streelements under various loading conditions. Develop and implement Python programs to perform be analysis for beam columns, continuous beams, frames, subjected to lateral instability, and rectangular plates. Compare the results obtained from industry-standard software Python-based buckling analysis to evaluate accuracy, efficient applicability in real-world scenarios. Apply learned techniques to solve real-world buckling programs to interpret results and make informed definition. 	uctural uckling beams ire and cy, and oblems, ecisions
Contents:	for structural design and safety.	No. of Hours
	List of Experiments (Minimum 8):	a / 6
	1. Buckling analysis of beam column using industry standard software	5
Trick Imperis Darie	2. Buckling analysis of continuous beam using industry standard software	Ð
	 Buckling analysis of frames using industry standard software Buckling analysis of beam subjected to lateral instability 	
	using industry standard software	
	5. Buckling analysis of rectangular plates using industry standard software	••
	6. Developing a computer program to perform buckling analysis of beam column	30
	 Developing a computer program to perform buckling analysis of continuous beam 	
	8. Developing a computer program to perform buckling analysis	
	of frames	
	9. Developing a computer program to perform buckling analysis	
	01 beam subjected to lateral instability 10. Developing a computer program to perform buckling analysis	
	of rectangular plates	
Destaura	Inquiry based learning, constructive planning of experiments,	
Pedagogy:	collaborative approach in performing experiments and field visits.	
References/	1. Adams, D. E., Health Monitoring of Structural Materia	ls and
Readings:	Components: Methods with Applications. John Wiley and Sons. 2010.	

	ISBN-13: 9780470511572.
	2. Daniel, B., Claus-Peter, F., & Güemes, A., Structural Health
	Monitoring, John Wiley and Sons, 2010, ISBN-13: 9780470394403.
	3. General Standard for Qualification and Certification of Non-
	Destructive Testing Personnel [MTD 21: Non-Destructive Testing], IS
	13805 (2004).
	4. Giurgiutiu, V., Structural Health Monitoring with Wafer Active
	Sensors, Academic Press Inc., 2014, ISBN-13: 9780124201026.
	5. Handbook on Repair and Rehabilitation of RCC Buildings, CPWD (Central Public Works Department), 2002.
	6. Huston, D., Structural Sensing, Health Monitoring, and Performance
	Evaluation, 2010, ISBN-13: 9781420012354.
	7. Method of Non-Destructive Testing of Concrete, Part 1: Ultrasonic
	Pulse Velocity [CED 2: Cement and Concrete], IS 13311-1 (1992).
	8. Method of Tests for Strength of Concrete, BIS, New Delhi, India, IS
	516:2006.
	9. Ou, J. P., Li, H., & Duan, Z. D., Structural Health Monitoring and
	Intelligent Infrastructure Vol-1, Taylor and Francis Group, London,
	U.K., 2005, ISBN-13: 978-0415396523.
6-6	After taking this course, student will be able to
NOA UNIVERSIA	CO 1. Analyze the stability and buckling behavior of different
Salar	structural elements under various loading conditions.
	CO 2. Develop and implement Python programs to perform buckling
ALLA ALL	analysis for beam columns, continuous beams, frames, beams
Course	subjected to lateral instability, and rectangular plates.
Outcomes	CO 3. Compare the results obtained from industry-standard software
विद्या विषे	and Python-based buckling analysis to evaluate accuracy,
and the second s	efficiency, and applicability in real-world scenarios.
	CO 4. Apply learned techniques to solve real-world buckling
	problems, enabling students to interpret results and make
	informed decisions for structural design and safety
	Linddle 12

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: REC-563
Title of the Course	: Statistics and Data Analysis for Engineering Research
Number of Credits	:2
Effective from AY	: 2024-25

Pre-requisites for the Course:	Basic Knowledge of Statistics	
Course Objectives:	 The course will enable the students to 1. Explain the different types of data and parameter estimations 2. Explain standard probability distributions 3. Select the appropriate parameter estimation & distribution met 4. Co-relate different Hypotheses 	hod
Content:	Childrature + Daile	No of Hours
Unit -1	 Data Analysis: Types of data, data collection techniques, Quantitative methods for analysis of data – statistical tools, experimental data, Qualitative data collection, questioners, rating scale, conducting survey. Statistical Modeling and Graphical Diagnostics - Scatter Plot, Stem-and-Leaf Plot, Histogram, Box Plot Correlation and Regression Modeling: Basic concept and numericals. 	9
Unit -2	Probability distributions and Sampling distributions: Basic introduction to Bernoulli, Binomial and Normal distribution. Basic introduction to Sampling distributions- Normal, t-distribution, Chi-square and F- distributions.	7
Unit -3	Parameter estimation: Point Estimation – Concept, unbiased estimator, method of maximum likelihood. Parameter estimation of standard distributions- Binomial and Normal. Confidence Interval Estimation - Concept, Confidence interval on mean of single normal population with variance known, Confidence interval on the ratio of variances of two normal distributions	7
Unit- 4	Tests of Hypotheses: Introduction, Type I and type II errors, significance level and power of the test, Test of hypotheses - on mean of single normal population with variance known, on variance of single normal population.	7
Pedagogy:	Inquiry based learning, Integrative, Reflective Learning, Const learning and Collaborative learning	ructive
References/ Readings:	 D. V Thiel, 'Research Methods for Engineers', Cambridge Press ISBN:978-110-70-3-488 T. Mustafy, T. U Rahman, 'Statistics & Data Analysis for Engine Scientists', Springer, 2024, ISBN:9789819946600. D. C. Montgomery, C. G. Runger, 'Applied Statistics and Probab Engineers', 6th Edition, Wiley India, 2016, ISBN 0, 471, 2045.4.4 	, 2014, ers and ility for

	 R. E. Walpole, R. H. Myers, S. L. Myers, K. E. Ye; Probability and Statistics for Engineers and Scientists ,9th Edition, Pearson Education India, 2013, ISBN 978-0-321-62911-1 J. Schmuller, Statistical Analysis with Excel for Dummies, 5th Edition, John Wiley & Sons, 2022.
Course Outcomes:	 After taking this course, student will be able to: CO 1. Explain the different types of data and probability distributions. CO 2. Select the appropriate parameter estimation & distribution method CO 3. Apply estimators for the given situations. CO 4. Evaluate Hypotheses based on the statistical considerations.

Name of the Programme	: Master of Engineering (Computer Aided Structural Engineering)
Course Code	: REC-564
Title of the Course	: Statistics and Data Analysis Lab
Number of Credits	: 2
Effective from AY	: 2024-25
Pro-roquisitos	

Pre-requisites for the Course:	Basic Knowledge of Statistics	
Course Objectives:	 The course will enable the students to 1. Apply the different types of data and parameter estimations 2. Analyze standard probability distributions 3. Demonstrate parameter estimation & distribution methods 4. Co-relate different Hypotheses 	No of
Content:	Challenger - Daries	Hours
	 Using open-source software like libreoffice or any proprietary software perform following experiments: 1. Obtain measures of central tendency and dispersion. 2. Obtain Quartiles, Percentiles and prepare Box-and-Whisker Diagram 3. Develop Pie chart, Bar Chart, Histogram and Stem-and-Leaf Plot, 4. Develop_correlation using Pearson's Correlation Coefficient and showing Scatter Diagrams and Trendlines 5. Develop Linear and Nonlinear Regression Models 6. Obtain probability values involving probability distributions – Binomial and Normal 7. Obtain values of Normal, t-distribution, Chi-square and F-statistic. 8. Develop confidence interval for single population and two populations with variance known. 9. Develop confidence interval on the ratio of variances of two normal distributions. 10. Perform test of hypotheses on mean/variance of single/ two population(s). 	60
Pedagogy:	Inquiry based learning, Integrative, Reflective Learning, Const learning and Collaborative learning	ructive
References/ Readings:	 D. V Thiel, 'Research Methods for Engineers', Cambridge Press ISBN:978-110-70-3-488 T. Mustafy, T. U Rahman, 'Statistics & Data Analysis for Engine Scientists', Springer, 2024, ISBN:9789819946600. D. C. Montgomery, C. G. Runger, 'Applied Statistics and Probab Engineers', 6th Edition, Wiley India, 2016, ISBN 0-471-20454-4 R. E. Walpole, R. H. Myers, S. L. Myers, K. E. Ye; Probabil Statistics for Engineers and Scientists ,9th Edition, Pearson Ed India, 2013, ISBN 978-0-321-62911-1 J. Schmuller, Statistical Analysis with Excel for Dummies, 5th 	i, 2014, ers and ility for ity and ucation Edition,

	John Wiley & Sons, 2022.
Course Outcomes:	 After taking this course, student will be able to: CO 1. Apply the different types of data and parameter estimations CO 2. Analyze standard probability distributions CO 3. Demonstrate parameter estimation & distribution methods CO 4. Co-relate different Hypotheses

Name of the Prog Course Code Title of the Cours Number of Credit Effective from AN	gramme : Master of Engineering (Computer Aided Structural Eng : REC-565 :ee : Statistical Techniques for Engineering Research :s : 2 : 2024-25	gineering
Pre-requisites for the Course:	Basic knowledge of Statistics and Probability	
Course Objectives:	 The course will enable the students to Understand the importance of statistical methods for research Select the appropriate factorial design method for a given experimental plan. Apply basic probability theorems and draw relevant inferences. Analyze suitable probability model for given set of data 	set of
Content:	Consisting a Cha	No of Hours
Unit-1	Overview on Statistical methods , collection of data, one dimensional and two-dimensional statistical analysis, computation of central tendency and dispersion for grouped and ungrouped data, correlation preliminary, understanding variability in data.	6
Unit-2	Design of Experiments , Preparation of experimental plan, full factorial design, fractional factorial design, identification of parameters and levels, randomization, replication, blocking, interaction; numerical; Optimization methods for two parameters.	9
Unit-3	Probability Preliminary : Introduction to Probability, definition, Sample Space, Events, Conditional Probability, Theorem on total probability, Bayes' theorem. Random Variable: Introduction, Discrete and Continuous distribution, Characteristics- Mean, Variance and distribution function.	8
Unit-4	Probability and Sampling Distribution: Bernoulli, Binomial, Exponential, Normal, distribution. Mean, variance and distribution function, important properties, approximations and applications. Statistic and Sampling Distribution: Population and Sample. Statistic, Sampling distributions- Normal, t-distribution, Chi- square and F- distributions.	7
Pedagogy:	Inquiry based learning, Integrative, Reflective Learning, Const learning and Collaborative learning	ructive
References/ Readings:	 Tahvir Mustafy, Tauhid U Rahman, 'Statistics & Data Analy Engineers and Scientists', Springer, 2024, ISBN:9789819946600. Jiju Antony, 'Design of Experiments for Engineers & Scientists', E 2023, ISBN 978-044-315-1736 Douglas Montgomery, 'Design and Analysis of Experiments', India, Eighth Edition, 2013, 9788126540501 J. Ravichandran, Probability and Statistics for Engineers, Wiley 2010, ISBN: 9788126523504 	sis for lsevier, Wiley v India,

	 R. Johnson, Probability and Statistics for engineers, Eighth Edition, Prentice Hall of India, New Delhi, 2015, ISBN 978-1-292-17601-7 J. Schmuller, Statistical Analysis with Excel for Dummies, 5th Edition, John Wiley & Sons, 2022. 	
Course Outcomes:	 After taking this course, student will be able to: CO 1. Understand the importance of statistical methods for research CO 2. Select the appropriate factorial design method for a given set of experimental plans. CO 3. Apply basic probability theorems and draw relevant inferences. CO 4. Analyze suitable probability model for given set of data 	

Name of the Prog Course Code Title of the Cours Number of Credit	gramme : Master of Engineering (Computer Aided Structural Eng : REC-566 :e : Statistical Techniques Lab ts : 2	gineering)
Pre-requisites	Basic knowledge of Statistics and Probability	
Course Objectives:	 The course will enable the students to 1. Apply basic probability theorems and draw relevant inferences. 2. Analyze suitable probability model for given set of data 3. Demonstrate factorial design methods 4. Synthesize fractional and full factorial experimental design data 	
Content:	Transformer - Dar o	No of Hours
	 Using open-source software like libreoffice or any proprietary software perform following experiments: 1. Obtain probability values involving discrete probability distributions - Bernoulli, Binomial. 2. Obtain probability values involving continuous probability distributions - Exponential and Normal distributions. 3. Obtain values of Normal, t-distribution, Chi-square and F-statistic. 4. Obtain values of Mean, Variance and distribution function of Bernoulli and Binomial distribution. 5. Obtain values of Mean, Variance and distribution function of Exponential and Normal distributions. 6. Obtain values of central tendency of grouped and ungrouped data. 7. Obtain values of dispersion of grouped and ungrouped data. 8. Analyse experimental output using full factorial design. 9. Analyse a full case study in involving full factorial design or fractional factorial design. 	60
Pedagogy:	Inquiry based learning, Integrative, Reflective Learning, Constructive learning and Collaborative learning	
References/ Readings:	 Tahvir Mustafy, Tauhid U Rahman, 'Statistics & Data Analysis for Engineers and Scientists', Springer, 2024, ISBN:9789819946600. Jiju Antony, 'Design of Experiments for Engineers & Scientists', Elsevier, 2023, ISBN 978-044-315-1736 Douglas Montgomery, 'Design and Analysis of Experiments', Wiley India, Eighth Edition, 2013, 9788126540501 J. Ravichandran, Probability and Statistics for Engineers, Wiley India, 2010, ISBN: 9788126523504 R. Johnson, Probability and Statistics for engineers, Eighth Edition, Prentice Hall of India, New Delhi, 2015, ISBN 978-1-292-17601-7 J. Schmuller, Statistical Analysis with Excel for Dummies, 5th Edition, 	

	John Wiley & Sons, 2022.
Course Outcomes:	 After taking this course, student will be able to: CO 1. Apply basic probability theorems and draw relevant inferences. CO 2. Analyze suitable probability model for given set of data CO 3. Demonstrate factorial design methods CO 4. Synthesize fractional and full factorial experimental design data

